Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage


  • 1.

    Pallansch, M. A. & Roos, R. In Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and Newer Enteroviruses 5th edn 839–893 (Lippincott Williams & Wilkins, Philadelphia, 2007).

  • 2.

    Marjomäki, V., Turkki, P. & Huttunen, M. Infectious entry pathway of enterovirus B species. Viruses 7, 6387–6399 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Holmes, C. W. et al. Predominance of enterovirus B and echovirus 30 as cause of viral meningitis in a UK population. J. Clin. Virol. 81, 90–93 (2016).

    PubMed 

    Google Scholar
     

  • 4.

    Maruo, Y. et al. Outbreak of aseptic meningitis caused by echovirus 30 in Kushiro, Japan in 2017. J. Clin. Virol. 116, 34–38 (2019).

    PubMed 

    Google Scholar
     

  • 5.

    McWilliam Leitch, E. C. et al. Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus echovirus types 9, 11, and 30. J. Virol. 84, 9292–9300 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Qiu, X. et al. Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies. Nat. Microbiol 3, 287–294 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Wang, X. et al. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site. Proc. Natl Acad. Sci. USA 114, 770–775 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Zhu, L. et al. Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating. Nat. Commun. 9, 1–9 (2018).

    ADS 

    Google Scholar
     

  • 9.

    Filman, D. J., Wien, M. W., Cunningham, J. A., Bergelson, J. M. & Hogle, J. M. Struct. Determ. Echovirus 1. Acta Cryst. D54, 1261–1272 (1998).

    CAS 

    Google Scholar
     

  • 10.

    Hendry, E. et al. The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7, 1527–1538 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    He, Y. et al. Structure of decay-accelerating factor bound to echovirus 7: a virus-receptor complex. Proc. Natl Acad. Sci. USA 99, 10325–10329 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Stuart, A. D. et al. Determination of the structure of a decay accelerating factor-binding clinical isolate of echovirus 11 allows mapping of mutants with altered receptor requirements for infection. J. Virol. 76, 7694–7704 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Bhella, D. et al. The structure of echovirus type 12 bound to a two-domain fragment of its cellular attachment protein decay-accelerating factor (CD 55). J. Biol. Chem. 279, 8325–8332 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Plevka, P. et al. Interaction of Decay-Accelerating Factor with Echovirus 7. J. Virol. 84, 12665–12674 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Yoder, J. D., Cifuente, J. O., Pan, J., Bergelson, J. M. & Hafenstein, S. The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J. Virol. 86, 12571–12581 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Buchta, D. et al. Enterovirus particles expel capsid pentamers to enable genome release. Nat. Commun. 10, 1138–1139 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Morosky, S. et al. The neonatal Fc receptor is a pan-echovirus receptor. Proc. Natl Acad. Sci. USA 116, 3758–3763 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Wang, X. et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 19, 424–429 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Ren, J. et al. Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 4, 1929–7 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Jayawardena, N., Burga, L. N., Poirier, J. T. & Bostina, M. Virus-receptor interactions: structural insights for oncolytic virus development. Oncolytic Virother 8, 39–56 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Wang, X. et al. Hepatitis A virus and the origins of picornaviruses. Nature 517, 85–88 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Ren, J. et al. Structures of coxsackievirus A16 capsids with native antigenicity: implications for particle expansion, receptor binding, and immunogenicity. J. Virol. 89, 10500–10511 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Rossmann, M. G., He, Y. & Kuhn, R. J. Picornavirus-receptor interactions. Trends Microbiol. 10, 324–331 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Tuthill, T. J., Groppelli, E., Hogle, J. M. & Rowlands, D. J. In Cell Entry by Non-Enveloped Viruses Vol. 343, 43–89 (Springer, Berlin, Heidelberg, 2010).

  • 25.

    Dang, M. et al. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell 5, 692–703 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Bergelson, J. M. et al. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl Acad. Sci. USA 91, 6245–6248 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Berryman, S., Clark, S., Monaghan, P. & Jackson, T. Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J. Virol. 79, 8519–8534 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Zhao, X. et al. Human neonatal Fc receptor is the cellular uncoating receptor for enterovirus B. Cell 177, 1553–1565.e16 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Staring, J. et al. KREMEN1 Is a host entry receptor for a major group of enteroviruses. Cell Host Microbe 23, 636–643.e5 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Yamayoshi, S. et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 15, 798–801 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Lange, R., Peng, X., Wimmer, E., Lipp, M. & Bernhardt, G. The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285, 218–227 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Bergelson, J. M. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Zhou, D. et al. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat. Microbiol. 4, 414–419 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Zhao, Y. et al. Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nat. Commun. 11, 38–38 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Strauss, M. et al. Nectin-like interactions between poliovirus and its receptor trigger conformational changes associated with cell entry. J. Virol. 89, 4143–4157 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Baggen, J. et al. Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proc. Natl Acad. Sci. USA 115, 397–402 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Niu, S. et al. Molecular and structural basis of Echovirus 11 infection by using the dual-receptor system of CD55 and FcRn. Chin. Sci. Bull. 65, 67–79 (2020).


    Google Scholar
     

  • 38.

    Kotecha, A. et al. Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nat. Commun. 8, 15408 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Shakeel, S. et al. Structural and functional analysis of coxsackievirus A9 integrin αvβ6 binding and uncoating. J. Virol. 87, 3943–3951 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    He, Y. et al. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Mol. Biol. 8, 874–878 (2001).

    CAS 

    Google Scholar
     

  • 41.

    Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Kang, W. et al. Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nat. Commun. https://doi.org/10.1038/s41467-020-18250-w (2020).

  • 44.

    Zhu, L. et al. Structure of human Aichi virus and implications for receptor binding. Nat. Microbiol 1, 16150 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Cao, L. et al. Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors. PLoS Biol. 17, e3000229 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Zhu, L. et al. Neutralization mechanisms of two highly potent antibodies against human enterovirus 71. mBio 9, e01013–e01018 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Shafren, D. R. et al. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J. Virol. 69, 3873–3877 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Mendelsohn, C. L., Wimmer, E. & Racaniello, V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56, 855–865 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Wei, W. et al. ICAM-5/Telencephalin is a functional entry receptor for enterovirus D68. Cell Host Microbe 20, 631–641 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Pfenninger, M. & Posada, D. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution 56, 1776–1788 (2002).

    PubMed 

    Google Scholar
     

  • 51.

    Greve, J. M. et al. The major human rhinovirus receptor is ICAM-1. Cell 56, 839–847 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Yuan, S. et al. Cryo-EM structure of a herpesvirus capsid at 3.1 Å. Science 360, eaao7283 (2018).

    PubMed 

    Google Scholar
     

  • 53.

    Wang, N. et al. Architecture of African swine fever virus and implications for viral assembly. Science 366, 640–644 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    McNulty, R. et al. Cryo-EM elucidation of the structure of bacteriophage P22 virions after genome release. Biophys. J. 114, 1295–1301 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Jenni, S. & Harrison, S. C. Structure of the DASH/Dam1 complex shows its role at the yeast kinetochore-microtubule interface. Science 360, 552–558 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Wang, N. et al. Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein Cell 11, 366–373 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Yang, Y. et al. Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein Cell 11, 339–351 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Lv, Z. et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science eabc5881 https://doi.org/10.1126/science.abc5881 (2020).

  • 59.

    Oyero, O. G., Adu, F. D. & Ayukekbong, J. A. Molecular characterization of diverse species enterovirus-B types from children with acute flaccid paralysis and asymptomatic children in Nigeria. Virus Res. 189, 189–193 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Zhang, J. et al. Identification of a new recombinant strain of echovirus 33 from children with hand, foot, and mouth disease complicated by meningitis in Yunnan, China. Virol. J. 16, 63–67 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS 

    Google Scholar
     

  • 63.

    Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed 

    Google Scholar
     

  • 65.

    Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 68, 352–367 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *