Sub-nanoscale atom-by-atom crafting of skyrmion-defect interaction profiles


  • 1.

    Bogdanov, A. N. & Yablonskii, D. Thermodynamically stable “vortices” in magnetically ordered crystals. the mixed state of magnets. Zh. Eksp. Teor. Fiz 95, 178 (1989).

  • 2.

    Rössler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • 3.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nano 8(3), 152–156 (2013).

    CAS 

    Google Scholar
     

  • 4.

    Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Zhou, Y. & Ezawa, M. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, 4652 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Crum, D. M. et al. Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, 8541 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Yu, G. et al. Room-temperature creation and spin-orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16, 1981–1988 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Garcia-Sanchez, F., Sampaio, J., Reyren, N., Cros, V. & Kim, J. A skyrmion-based spin-torque nano-oscillator. New J. Phys. 18, 075011 (2016).


    Google Scholar
     

  • 11.

    Xia, H. et al. Control and manipulation of antiferromagnetic skyrmions in racetrack. J. Phys. D Appl. Phys. 50, 505005 (2017).


    Google Scholar
     

  • 12.

    Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    CAS 

    Google Scholar
     

  • 13.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Materi 15, 501–506 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Meyer, S., Perini, M., von Malottki, S., Kubetzka, A., Wiesendanger, R., von Bergmann, K., & Heinze, S. Isolated zero field sub-10 nm skyrmions in ultrathin Co films. Nat. Commun. 10, 1–8 (2019).

  • 20.

    Zhang, X. et al. Skyrmion-electronics: Writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Condens. Matter Phys. 32, 143001 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Duong, N. K. et al. Stabilizing zero-field skyrmions in Ir/Fe/Co/Pt thin film multilayers by magnetic history control. Appl. Phys. Lett. 114, 072401 (2019).

    ADS 

    Google Scholar
     

  • 22.

    Kang, W. et al. A comparative study on racetrack memories: Domain wall vs. skyrmion. In 2018 IEEE 7th Non-volatile Memory Systems and Applications Symposium (NVMSA), 7–12 (IEEE, 2018).

  • 23.

    Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solid 4(4), 241–255 (1958).

  • 24.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Yu, X. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    CAS 

    Google Scholar
     

  • 27.

    Litzius, K. et al. Skyrmion hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    CAS 

    Google Scholar
     

  • 28.

    Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current–velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 29.

    Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Yu, G. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 17, 261–268 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Kang, W. et al. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci. Rep. 6, 23164 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Zhang, X., Zhou, Y., Ezawa, M., Zhao, G. & Zhao, W. Magnetic skyrmion transistor: Skyrmion motion in a voltage-gated nanotrack. Sci. Rep. 5, 11369 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Stosic, D., Ludermir, T. B. & Milošević, V. Pinning of magnetic skyrmions in a monolayer Co film on Pt(111): Theoretical characterization and exemplified utilization. Phys. Rev. B 96, 214403 (2017).

  • 34.

    Lima Fernandes, I., Bouaziz, J., Blügel, S. & Lounis, S. Universality of defect-skyrmion interaction profiles. Nat. Commun. 9, 4395 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Müller, Jan. Magnetic skyrmions on a two-lane racetrack. New J. Phys. 19, 025002 (2017).


    Google Scholar
     

  • 36.

    Lima Fernandes, I. , Chico, J. & Lounis, S. Impurity-dependent gyrotropic motion, deflection and pinning of current-driven ultrasmall skyrmions in PdFe/Ir(111) surface. J. Phys. Condens. Matter 32, 425802 (2020).  


    Google Scholar
     

  • 37.

    Hanneken, C., Kubetzka, A., von Bergmann, K. & Wiesendanger, R. Pinning and movement of individual nanoscale magnetic skyrmions via defects. New J. Phys. 18, 055009 (2016).


    Google Scholar
     

  • 38.

    Holl, C. et al. Probing the pinning strength of magnetic vortex cores with sub-nanometer resolution. Nat. Commun. 11, 1–7 (2020).


    Google Scholar
     

  • 39.

    Choi, H. C. & Lin, S.-Z. Density functional theory study of skyrmion pinning by atomic defects in mnsi. Phys. Rev. B 93, 115112 (2016).

  • 40.

    Lima Fernandes, I. , Bouhassoune, M. & Lounis, S. Defect-implantation for the all-electrical detection of non-collinear spin-textures. Nat. Commun. 11, 1602 (2020).


    Google Scholar
     

  • 41.

    Liu, Y.-H. & Li, Y.-Q. A mechanism to pin skyrmions in chiral magnets. J. Phys. Condens. Matter 25, 076005 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 42.

    Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Navau, C., Del-Valle, N. & Sanchez, A. Interaction of isolated skyrmions with point and linear defects. J. Magn. Magn. Mater. 465, 709–715 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Castell-Queralt, J., González-Gómez, L., Del-Valle, N., Sanchez, A. & Navau, C. Accelerating, guiding, and compressing skyrmions by defect rails. Nanoscale 11, 12589 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Díaz, S. A., Reichhardt, C., Arovas, D. P., Saxena, A. & Reichhardt, C. J. O. Avalanches and criticality in driven magnetic skyrmions. Phys. Rev. Lett. 120, 117203 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 46.

    Reichhardt, C., Ray, D. & Reichhardt, C. Nonequilibrium phases and segregation for skyrmions on periodic pinning arrays. Phys. Revi B 98, 134418 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Brown, B., Reichhardt, C. & Reichhardt, C. Reversible to irreversible transitions in periodically driven skyrmion systems. New J. Phys. 21, 013001 (2019).


    Google Scholar
     

  • 48.

    Brown, B. L., Täuber, U. C. & Pleimling, M. Skyrmion relaxation dynamics in the presence of quenched disorder. Phys. Rev. B 100, 024410 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 50.

    Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 51.

    Simon, E., Palotás, K., Rózsa, L., Udvardi, L. & Szunyogh, L. Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir (111). Phys. Rev. B 90, 094410 (2014).

    ADS 

    Google Scholar
     

  • 52.

    dos Santos Dias, M., Bouaziz, J., Bouhassoune, M., Blügel, S. & Lounis, S. Chirality-driven orbital magnetic moments as a new probe for topological magnetic structures. Nat. Commun. 7, 13613 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Leonov, A. et al. The properties of isolated chiral skyrmions in thin magnetic films. New J. Phys. 18, 065003 (2016).


    Google Scholar
     

  • 54.

    Bouhassoune, M., Fernandes, I. L., Blügel, S. & Lounis, S. Unoccupied surface and interface states in Pd thin films deposited on Fe/Ir(111) surface. New J. Phys. 21, 063015 (2019).

    CAS 

    Google Scholar
     

  • 55.

    Mavropoulos, P., Lounis, S. & Blügel, S. Exchange coupling in transition-metal nanoclusters on Cu(001) and Cu(111) surfaces. Phys. Status Solidi B 247, 1187–1196 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Lounis, S., Mavropoulos, P., Dederichs, P. & Blügel, S. Noncollinear Korringa–Kohn–Rostoker Green function method: Application to 3d nanostructures on Ni (001). Phys. Revi B 72, 224437 (2005).

    ADS 

    Google Scholar
     

  • 57.

    Holzberger, S., Schuh, T., Blügel, S., Lounis, S. & Wulfhekel, W. Parity effect in the ground state localization of antiferromagnetic chains coupled to a ferromagnet. Physi. Rev. Lett. 110, 157206 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 58.

    Lounis, S., Mavropoulos, P., Zeller, R., Dederichs, P.H., & Blügel, S. Noncollinear magnetism of Cr and Mn nanoclusters on Ni(111): Changing the magnetic configuration atom by atom. Phys. Rev. B 75, 174436 (2007).

  • 59.

    Lounis, S. Non-collinear magnetism induced by frustration in transition-metal nanostructures deposited on surfaces. J. Condens. Matter Phys. 26, 273201 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Pinna, D. et al. Skyrmion gas manipulation for probabilistic computing. Phys. Rev. Appl. 9, 064018 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Ma, X., Reichhardt, C. O. & Reichhardt, C. Reversible vector ratchets for skyrmion systems. Physical Review B 95, 104401 (2017).

    ADS 

    Google Scholar
     

  • 62.

    Reichhardt, C., Ray, D. & Reichhardt, C. O. Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates. New J. Phys. 17, 073034 (2015).


    Google Scholar
     

  • 63.

    Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Papanikolaou, N., Zeller, R. & Dederichs, P. H. Conceptual improvements of the KKR method. J. Phys. Condens. Matter 14, 2799 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Bauer, D. S. G. Development of a Relativistic Full-Potential First-Principles Multiple Scattering Green Function Method Applied to Complex Magnetic Textures of Nano Structures at Surfaces. PhD dissertation at the RWTH-Aachen (2013).

  • 66.

    Ebert, H. & Mankovsky, S. Anisotropic exchange coupling in diluted magnetic semiconductors: Ab initio spin-density functional theory. Phys. Rev. B 79, 045209 (2009).

    ADS 

    Google Scholar
     

  • 67.

    Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Lounis, S. & Dederichs, P. Mapping the magnetic exchange interactions from first principles: Anisotropy anomaly and application to Fe, Ni, and Co. Phys. Rev. B 82, 180404 (2010).

    ADS 

    Google Scholar
     

  • 69.

    Polesya, S. et al. Finite-temperature magnetism of ({text{ Fe }}_{x}{text{ Pd }}_{1-x}) and ({text{ Co }}_{x}{text{ Pt }}_{1-x}) alloys. Phys. Rev. B 82, 214409 (2010).

    ADS 

    Google Scholar
     

  • 70.

    Skubic, B., Hellsvik, J., Nordström, L. & Eriksson, O. A method for atomistic spin dynamics simulations: Implementation and examples. J. Phys. Condens. Matter 20, 315203 (2008).


    Google Scholar
     

  • 71.

    Evans, R. F. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *