Synthetic band-structure engineering in polariton crystals with non-Hermitian topological phases


  • 1.

    Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Brooks Cole, 1989).

  • 2.

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).

    ADS 

    Google Scholar
     

  • 5.

    Eiermann, B. et al. Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92, 230401 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals (Princeton University Press, 2008).

  • 7.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 8.

    Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 10.

    Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    CAS 

    Google Scholar
     

  • 14.

    Nakajima, S. et al. Topological thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    CAS 

    Google Scholar
     

  • 15.

    Belopolski, I. et al. A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases. Sci. Adv. 3, e1501692 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Xiao, M., Zhang, Z. Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).


    Google Scholar
     

  • 17.

    Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 18.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    PubMed 

    Google Scholar
     

  • 19.

    Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CAS 

    Google Scholar
     

  • 21.

    Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    CAS 

    Google Scholar
     

  • 23.

    Zhong, Q., Khajavikhan, M., Christodoulides, D. N. & El-Ganainy, R. Winding around non-Hermitian singularities. Nat. Commun. 9, 4808 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    El-Ganainy, R., Khajavikhan, M., Christodoulides, D. N. & Ozdemir, S. K. The dawn of non-Hermitian optics. Commun. Phys. 2, 37 (2019).


    Google Scholar
     

  • 25.

    Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities Revised edn (OUP, Oxford, 2011).

  • 27.

    Lai, C. W. et al. Coherent zero-state and π-state in an exciton-polariton condensate array. Nature 450, 529 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Maragkou, M. et al. Spontaneous nonground state polariton condensation in pillar microcavities. Phys. Rev. B 81, 081307 (2010).

    ADS 

    Google Scholar
     

  • 29.

    Kim, N. Y. et al. Dynamical d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential. Nat. Phys. 7, 681 (2011).

    CAS 

    Google Scholar
     

  • 30.

    Wirth, G., Ölschläger, M. & Hemmerich, A. Evidence for orbital superfluidity in the p-band of a bipartite optical square lattice. Nat. Phys. 7, 147–153 (2010).


    Google Scholar
     

  • 31.

    Winkler, K. et al. Collective state transitions of exciton-polaritons loaded into a periodic potential. Phys. Rev. B 93, 121303 (2016).

    ADS 

    Google Scholar
     

  • 32.

    Cerda-Méndez, E. A. et al. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116402 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • 33.

    St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Whittaker, C. et al. Exciton polaritons in a two-dimensional lieb lattice with spin-orbit coupling. Phys. Rev. Lett. 120, 097401 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton ({mathbb{Z}}) topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Cerda-Méndez, E. A. et al. Exciton-polariton gap solitons in two-dimensional lattices. Phys. Rev. Lett. 111, 146401 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 39.

    Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nat. Commun. 4, 1749 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005).

    CAS 

    Google Scholar
     

  • 41.

    Neshev, D. N. et al. Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • 42.

    Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860–864 (2010).

    CAS 

    Google Scholar
     

  • 43.

    Tosi, G. et al. Sculpting oscillators with light within a nonlinear quantum fluid. Nat. Phys. 8, 190 (2012).

    CAS 

    Google Scholar
     

  • 44.

    Tosi, G. et al. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1–5 (2012).


    Google Scholar
     

  • 45.

    Askitopoulos, A. et al. Polariton condensation in an optically induced two-dimensional potential. Phys. Rev. B 88, 041308 (2013).

    ADS 

    Google Scholar
     

  • 46.

    Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Töpfer, J. D., Sigurdsson, H., Pickup, L. & Lagoudakis, P. G. Time-delay polaritonics. Commun. Phys. 3, 2 (2020).


    Google Scholar
     

  • 48.

    Cilibrizzi, P. et al. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells. Appl. Phys. Lett. 105, 191118 (2014).


    Google Scholar
     

  • 49.

    Gao, T. et al. Talbot effect for exciton polaritons. Phys. Rev. Lett. 117, 097403 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Ruostekoski, J., Dunne, G. V. & Javanainen, J. Particle number fractionalization of an atomic Fermi-Dirac gas in an optical lattice. Phys. Rev. Lett. 88, 180401 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 51.

    Jaksch, D. & Zoller, P. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56–56 (2003).

    ADS 

    Google Scholar
     

  • 52.

    Jiménez-García, K. et al. Peierls substitution in an engineered lattice potential. Phys. Rev. Lett. 108, 225303 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 53.

    Kolovsky, A. R. Creating artificial magnetic fields for cold atoms by photon-assisted tunneling. EPL (Europhys. Lett.) 93, 20003 (2011).

    ADS 

    Google Scholar
     

  • 54.

    Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Hofmann, T. et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res. 2, 023265 (2020).

    CAS 

    Google Scholar
     

  • 56.

    Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, 201103 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Yoshida, T., Peters, R., Kawakami, N. & Hatsugai, Y. Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry. Phys. Rev. B 99, 121101 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Yoshida, T., Kudo, K. & Hatsugai, Y. Non-Hermitian fractional quantum Hall states. Sci. Rep. 9, 16895 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Comaron, P., Shahnazaryan, V., Brzezicki, W., Hyart, T. & Matuszewski, M. Non-Hermitian topological end-mode lasing in polariton systems. Phys. Rev. Res. 2, 022051 (2020).

    CAS 

    Google Scholar
     

  • 60.

    Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Banerjee, R., Mandal, S. & Liew, T. C. H. Coupling between exciton-polariton corner modes through edge states. Phys. Rev. Lett. 124, 063901 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Ruostekoski, J., Javanainen, J. & Dunne, G. V. Manipulating atoms in an optical lattice: fractional fermion number and its optical quantum measurement. Phys. Rev. A 77, 013603 (2008).

    ADS 

    Google Scholar
     

  • 63.

    Maragkou, M. et al. Optical analogue of the spin Hall effect in a photonic cavity. Opt. Lett. 36, 1095–1097 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • 64.

    Pickup, L., Sigurdsson, H. & Ruostekoski, P. G. & Lagoudakis, J. Data for synthetic band-structure engineering in polariton crystals with non-Hermitian topological phases. University of Southampton repository. https://doi.org/10.5258/SOTON/D1194 (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *