Temperature transcends partner specificity in the symbiosis establishment of a cnidarian


  • 1.

    Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.


    Google Scholar
     

  • 2.

    Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci. 2017;4:158.


    Google Scholar
     

  • 3.

    Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol. 2013;22:4335–48.

    PubMed 

    Google Scholar
     

  • 4.

    Bay RA, Palumbi SR. Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol. 2014;24:2952–6.

    PubMed 

    Google Scholar
     

  • 5.

    Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV. Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348:1460.

    PubMed 

    Google Scholar
     

  • 6.

    Howells EJ, Abrego D, Meyer E, Kirk NL, Burt JA. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob Change Biol. 2016;22:2702–14.


    Google Scholar
     

  • 7.

    Morikawa MK, Palumbi SR. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci USA. 2019;116:10586.

    PubMed 

    Google Scholar
     

  • 8.

    Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc Biol Sci. 2006;273:2305–12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA. 2008;105:10444.

    PubMed 

    Google Scholar
     

  • 10.

    LaJeunesse TC, Smith RT, Finney J, Oxenford H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc B: Biol Sci. 2009;276:4139–48.


    Google Scholar
     

  • 11.

    Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change. 2011;2:116.


    Google Scholar
     

  • 12.

    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–.e6.

    PubMed 

    Google Scholar
     

  • 13.

    Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE. 2012;7:e50685.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. Mechanisms of reef coral resistance to future climate change. Science. 2014;344:895.

    PubMed 

    Google Scholar
     

  • 15.

    Sawall Y, Al-Sofyani A, Hohn S, Banguera-Hinestroza E, Voolstra CR, Wahl M. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci Rep. 2015;5:8940.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627.


    Google Scholar
     

  • 17.

    Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol, Evolution, Syst. 2003;34:661–89.


    Google Scholar
     

  • 18.

    Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 2016;10:2693–701.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Cunning R, Silverstein RN, Baker AC. Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs. 2018;37:145–52.


    Google Scholar
     

  • 20.

    Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA. Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs. 2009;28:709–13.


    Google Scholar
     

  • 21.

    Putnam HM, Stat M, Pochon X, Gates RG. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B: Biol Sci. 2012;279:4352–61.


    Google Scholar
     

  • 22.

    Stat M, Morris E, Gates RD. Functional diversity in coral–dinoflagellate symbiosis. Proc Natl Acad Sci USA. 2008;105:9256.

    PubMed 

    Google Scholar
     

  • 23.

    Starzak DE, Quinnell RG, Nitschke MR, Davy SK. The influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis. Mar Biol. 2014;161:711–24.


    Google Scholar
     

  • 24.

    Gabay Y, Weis VM, Davy SK. Symbiont identity influences patterns of symbiosis establishment, host growth, and asexual reproduction in a model cnidarian-dinoflagellate symbiosis. Biol Bull. 2018;234:1–10.

    PubMed 

    Google Scholar
     

  • 25.

    Quigley KM, Bay LK, Willis BL. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus acropora. Front Mar Sci. 2017;4:401.


    Google Scholar
     

  • 26.

    Cumbo VR, vanOppen MJH, Baird AH. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar Ecol Prog Ser. 2018;587:117–27.


    Google Scholar
     

  • 27.

    Ali A, Kriefall NG, Emery LE, Kenkel CD, Matz MV, Davies SW. Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment. Coral Reefs. 2019;38:405–15.


    Google Scholar
     

  • 28.

    McIlroy SE, Cunning R, Baker AC, Coffroth MA. Competition and succession among coral endosymbionts. Ecol Evolution. 2019;9:12767–78.


    Google Scholar
     

  • 29.

    Abrego D, Willis BL, van Oppen MJH. Impact of light and temperature on the uptake of algal symbionts by coral juveniles. PLoS ONE. 2012;7:e50311.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Schnitzler CE, Hollingsworth LL, Krupp DA, Weis VM. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar Biol. 2012;159:633–42.


    Google Scholar
     

  • 31.

    Hawkins TD, Hagemeyer JCG, Warner ME. Temperature moderates the infectiousness of two conspecific Symbiodinium strains isolated from the same host population. Environ Microbiol. 2016;18:5204–17.

    PubMed 

    Google Scholar
     

  • 32.

    Swain TD, Chandler J, Backman V, Marcelino L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct Ecol. 2017;31:172–83.


    Google Scholar
     

  • 33.

    Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME J. 2019;13:2489–99.

    PubMed 

    Google Scholar
     

  • 34.

    Poland DM, Coffroth MA. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs. 2017;36:119–29.


    Google Scholar
     

  • 35.

    Fraune S, Bosch TCG. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA. 2007;104:13146.

    PubMed 

    Google Scholar
     

  • 36.

    Herrera M, Ziegler M, Voolstra CR, Aranda M. Laboratory-cultured strains of the sea anemone exaiptasia reveal distinct bacterial communities. Front Mar Sci. 2017;4:115.


    Google Scholar
     

  • 37.

    Grajales A, Rodríguez E. Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actinaria, Metridioidea). Zootaxa. 2014;3826:55–100.

    PubMed 

    Google Scholar
     

  • 38.

    Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity. J Phycol. 2013;49:447–58.

    PubMed 

    Google Scholar
     

  • 39.

    Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching. PLoS ONE. 2016;11:e0152693.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics. 2009;10:258.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc Biol Sci. 2018;285:20172654.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Belda-Baillie CA, Baillie BK, Maruyama T. Specificity of a model cnidarian-dinoflagellate symbiosis. Biol Bull. 2002;202:74–85.

    PubMed 

    Google Scholar
     

  • 43.

    Rodriguez-Lanetty M, Chang S-J, Song J-I. Specificity of two temperate dinoflagellate–anthozoan associations from the north-western Pacific Ocean. Mar Biol. 2003;143:1193–9.


    Google Scholar
     

  • 44.

    Cziesielski MJ, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies. Ecol Evolution. 2019;9:10055–66.


    Google Scholar
     

  • 45.

    Lehnert EM, Mouchka ME, Burriesci MS, Gallo ND, Schwarz JA, Pringle JR. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda). 2014;4:277–95.


    Google Scholar
     

  • 46.

    Gegner HM, Ziegler M, Rädecker N, Buitrago-López C, Aranda M, Voolstra CR. High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open. 2017;6:1943.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas A-H, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15:e1008189.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, et al. Distinct bacterial communities associated with the coral model aiptasia in aposymbiotic and symbiotic states with symbiodinium. Front Mar Sci. 2016;3:234.


    Google Scholar
     

  • 49.

    Matthews JL, Sproles AE, Oakley CA, Grossman AR, Weis VM, Davy SK. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J Exp Biol. 2016;219:306.

    PubMed 

    Google Scholar
     

  • 50.

    Hume BCC, Ziegler M, Poulain J, Pochon X, Romac S, Boissin E, et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ. 2018;6:e4816.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–80.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing; 2018.

  • 53.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Community Ecology Package. 2019.

  • 54.

    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.


    Google Scholar
     

  • 55.

    Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. American Cancer Society; 2017. p. 1–15.

  • 56.

    Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.


    Google Scholar
     

  • 57.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    IBM SPSS Statistics (Version 22.0). Armonk, NY, USA: IBM Corporation; 2013.

  • 59.

    Robison JD, Warner ME. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol. 2006;42:568–79.


    Google Scholar
     

  • 60.

    McGinty ES, Pieczonka J, Mydlarz LD. Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol. 2012;64:1000–7.

    PubMed 

    Google Scholar
     

  • 61.

    Grégoire V, Schmacka F, Coffroth MA, Karsten U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J Appl Phycol. 2017;29:1893–905.


    Google Scholar
     

  • 62.

    Lesser MP. Phylogenetic signature of light and thermal stress for the endosymbiotic dinoflagellates of corals (Family Symbiodiniaceae). Limnol Oceanogr. 2019;64:1852–63.


    Google Scholar
     

  • 63.

    Hambleton EA, Guse A, Pringle JR. Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. J Exp Biol. 2014;217:1613.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep. 2016;6:32366.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol. 2013;22:4499–515.

    PubMed 

    Google Scholar
     

  • 66.

    Little AF, van Oppen MJH, Willis BL. Flexibility in algal endosymbioses shapes growth in reef corals. Science. 2004;304:1492.

    PubMed 

    Google Scholar
     

  • 67.

    Pettay DT, Wham DC, Smith RT, Iglesias-Prieto R, LaJeunesse TC. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci USA. 2015;112:7513.

    PubMed 

    Google Scholar
     

  • 68.

    Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.

    PubMed 

    Google Scholar
     

  • 69.

    Nyamukondiwa C, Terblanche JS. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J Therm Biol. 2009;34:406–14.


    Google Scholar
     

  • 70.

    Dowd WW, King FA, Denny MW. Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol. 2015;218:1956.

    PubMed 

    Google Scholar
     

  • 71.

    Chidawanyika F, Nyamukondiwa C, Strathie L, Fischer K. Effects of thermal regimes, starvation and age on heat tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE. 2017;12:e0169371.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep. 2019;9:9985.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, et al. Using aiptasia as a model to study metabolic interactions in cnidarian-symbiodinium symbioses. Front Physiol. 2018;9:214–214.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Change Biol. 2018;24:e474–84.


    Google Scholar
     

  • 75.

    Berumen ML, Voolstra CR, Daffonchio D, Agusti S, Aranda M, Irigoien X, et al. The Red Sea: environmental gradients shape a natural laboratory in a nascent ocean. In: Voolstra CR, Berumen ML, editors. Coral Reefs of the Red Sea. Cham: Springer International Publishing; 2019. p. 1–10.

  • 76.

    Hawkins TD, Hagemeyer JCG, Hoadley KD, Marsh AG, Warner ME. Partitioning of respiration in an animal-algal symbiosis: implications for different aerobic capacity between Symbiodinium spp. Front Physiol. 2016;7:128.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Hoadley KD, Rollison D, Pettay DT, Warner ME. Differential carbon utilization and asexual reproduction under elevated pCO2 conditions in the model anemone, Exaiptasia pallida, hosting different symbionts. Limnol Oceanogr. 2015;60:2108–20.


    Google Scholar
     

  • 78.

    Borell EM, Yuliantri AR, Bischof K, Richter C. The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J Exp Mar Biol Ecol. 2008;364:116–23.


    Google Scholar
     

  • 79.

    Ferrier-Pagès C, Rottier C, Beraud E, Levy O. Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J Exp Mar Biol Ecol. 2010;390:118–24.


    Google Scholar
     

  • 80.

    Connolly SR, Lopez-Yglesias MA, Anthony KRN. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs. 2012;31:951–60.


    Google Scholar
     

  • 81.

    Lyndby NH, Holm JB, Wangpraseurt D, Grover R, Rottier C, Kühl M, et al. Effect of feeding and thermal stress on photosynthesis, respiration and the carbon budget of the scleractinian coral Pocillopora damicornis. bioRxiv. 2018:378059.

  • 82.

    Borell EM, Bischof K. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia. 2008;157:593.

    PubMed 

    Google Scholar
     

  • 83.

    Weng L-C, Pasaribu B, Ping Lin I, Tsai C-H, Chen C-S, Jiang P-L. Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from aiptasia pulchella. Sci Rep. 2014;4:5777.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Fitt W, Cook C. The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Mar Biol. 2001;139:507–17.


    Google Scholar
     

  • 85.

    Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs. 2003;22:229–40.


    Google Scholar
     

  • 86.

    van der Merwe R, Röthig T, Voolstra CR, Ochsenkühn MA, Lattemann S, Amy GL. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment. Front Mar Sci. 2014;1:58.


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *