Testing for context-dependent effects of prenatal thyroid hormones on offspring survival and physiology: an experimental temperature manipulation


  • 1.

    Moore, M. P., Whiteman, H. H. & Martin, R. A. A mother’s legacy: The strength of maternal effects in animal populations. Ecol. Lett. 22, 1620–1628 (2019).

    PubMed 

    Google Scholar
     

  • 2.

    Yin, J. J., Zhou, M., Lin, Z. R., Li, Q. S. Q. & Zhang, Y. Y. Transgenerational effects benefit offspring across diverse environments: A meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).

    PubMed 

    Google Scholar
     

  • 3.

    Groothuis, T. G. G., Hsu, B.-Y., Kumar, N. & Tschirren, B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model. Philos. Trans. R. Soc. B 374, 20180115 (2019).

    CAS 

    Google Scholar
     

  • 4.

    Ruuskanen, S. & Hsu, B.-Y. Maternal thyroid hormones: An unexplored mechanism underlying maternal effects in an ecological framework. Physiol. Biochem. Zool. 91, 904–916 (2018).

    PubMed 

    Google Scholar
     

  • 5.

    Meylan, S., Miles, D. B. & Clobert, J. Hormonally mediated maternal effects, individual strategy and global change. Philos. Trans. R. Soc. B 367, 1647–1664 (2012).


    Google Scholar
     

  • 6.

    Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here?. Glob. Change Biol. 24, 13–34 (2018).

    ADS 

    Google Scholar
     

  • 7.

    Ruuskanen, S., Hsu, B.-Y. & Nord, A. Endocrinology of thermoregulation of birds in a changing climate. https://doi.org/10.32942/osf.io/jzam3 (2020).

  • 8.

    Sheriff, M. J. et al. Integrating ecological and evolutionary context in the study of maternal stress. Integr. Comp. Biol. 57, 437–449 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Schoech, S. J., Rensel, M. A. & Heiss, R. S. Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: A review. Curr. Zool. 57, 514–530 (2011).

    CAS 

    Google Scholar
     

  • 10.

    Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: Effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, E135–E149 (2008).

    PubMed 

    Google Scholar
     

  • 11.

    Weber, B. M. et al. Pre- and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and survival of nestling house wrens. Funct. Ecol. 32, 1995–2007 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Dantzer, B. et al. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340, 1215–1217 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Zimmer, C., Boogert, N. J. & Spencer, K. A. Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm. Behav. 64, 494–500 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Muriel, J. et al. Context-dependent effects of yolk androgens on nestling growth and immune function in a multibrooded passerine. J. Evol. Biol. 28, 1476–1488 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Gil, D. Hormones in avian eggs: Physiology, ecology and behavior. Adv. Study Behav. 38, 337–398 (2008).


    Google Scholar
     

  • 16.

    Hsu, B.-Y., Doligez, B., Gustafsson, L. & Ruuskanen, S. Transient growth-enhancing effects of elevated maternal thyroid hormones at no apparent oxidative cost during early postnatal period. J. Avian Biol. 50, jav-01919 (2019).


    Google Scholar
     

  • 17.

    Sarraude, T., Hsu, B.-Y., Groothuis, T. G. G. & Ruuskanen, S. Manipulation of prenatal thyroid hormones does not influence growth or physiology in nestling pied flycatchers. Physiol. Biochem. Zool. 93, 255–266 (2020).

    PubMed 

    Google Scholar
     

  • 18.

    Hsu, B.-Y., Dijkstra, C., Darras, V. M., de Vries, B. & Groothuis, T. G. G. Maternal thyroid hormones enhance hatching success but decrease nestling body mass in the rock pigeon (Columba livia). Gen. Comp. Endocrinol. 240, 174–181 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J. & Metcalfe, N. B. The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Funct. Ecol. 29, 479–486 (2015).


    Google Scholar
     

  • 20.

    McNabb, F. M. A. The hypothalamic–pituitary–thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37, 163–193 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Price, E. R. & Dzialowski, E. M. Development of endothermy in birds: Patterns and mechanisms. J. Comp. Physiol. B 188, 373–391 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Ruuskanen, S. et al. Temperature-induced variation in yolk androgen and thyroid hormone levels in avian eggs. Gen. Comp. Endocrinol. 235, 29–37 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Stier, A., Bize, P., Hsu, B.-Y. & Ruuskanen, S. Plastic but repeatable: Rapid adjustments of mitochondrial function and density during reproduction in a wild bird species. Biol. Lett. 15, 20190536 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Salin, K., Auer, S. K., Rey, B., Selman, C. & Metcalfe, N. B. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. R. Soc. B 282, 20151028 (2015).

    PubMed 

    Google Scholar
     

  • 25.

    Lassiter, K., Dridi, S., Greene, E., Kong, B. & Bottje, W. G. Identification of mitochondrial hormone receptors in avian muscle cells. Poult. Sci. 97, 2926–2933 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Lanni, A., Moreno, M. & Goglia, F. Mitochondrial actions of thyroid hormone. Compr. Physiol. 6, 1591–1607 (2016).

    PubMed 

    Google Scholar
     

  • 27.

    Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell. Endocrinol. 342, 1–7 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Clarke, A. & Portner, H. O. Temperature, metabolic power and the evolution of endothermy. Biol. Rev. 85, 703–727 (2010).

    PubMed 

    Google Scholar
     

  • 29.

    Xia, T., Zhang, X., Wang, Y. & Deng, D. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation, and mitochondrial dysfunction in skeletal muscle of fetal rats. Biosci. Rep. 38, BSR20171731 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, New York, 2015).


    Google Scholar
     

  • 31.

    Villanueva, I., Alva-Sanchez, C. & Pacheco-Rosado, J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid. Med. Cell. Longev. 2013, 218145 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Stier, A. et al. Elevation impacts the balance between growth and oxidative stress in coal tits. Oecologia 175, 791–800 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 33.

    Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Andreasson, F., Nord, A. & Nilsson, J. -Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. 49, jav-01620 (2018).


    Google Scholar
     

  • 35.

    Podmokła, E., Drobniak, S. M. & Rutkowska, J. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method—a meta-analysis. Biol. Rev. 93, 1499–1517 (2018).

    PubMed 

    Google Scholar
     

  • 36.

    Lundberg, A. & Alatalo, R. The Pied Flycatcher (Poyser, London, 1992).


    Google Scholar
     

  • 37.

    Haggerty, T. M. Effects of nestling age and brood size on nestling care in the Bachman’s sparrow (Aimophila aestivalis). Am. Midl. Nat. 128, 115–125 (1992).


    Google Scholar
     

  • 38.

    Chastel, O. & Kersten, M. Brood size and body condition in the house sparrow Passer domesticus: The influence of brooding behaviour. Ibis 144, 284–292 (2002).


    Google Scholar
     

  • 39.

    Ruuskanen, S. et al. A new method for measuring thyroid hormones using nano-LC-MS/MS. J. Chromatogr. B 1093–1094, 24–30 (2018).


    Google Scholar
     

  • 40.

    Chang, H.-W. et al. High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis. BMC Biotechnol. 8, 12 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • 42.

    Halekoh, U. & Højsgaard, S. Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J. Stat. Softw. 59, 1–32 (2014).


    Google Scholar
     

  • 43.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).


    Google Scholar
     

  • 44.

    Ruuskanen, S., Darras, V. M., Visser, M. E. & Groothuis, T. G. G. Effects of experimentally manipulated yolk thyroid hormone levels on offspring development in a wild bird species. Horm. Behav. 81, 38–44 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Rodríguez, S., Diez-Méndez, D. & Barba, E. Negative effects of high temperatures during development on immediate post-fledging survival in great tits Parus major. Acta Ornithol. 51, 235–244 (2016).


    Google Scholar
     

  • 46.

    Rodríguez, S. & Barba, E. Nestling growth is impaired by heat stress: An experimental study in a Mediterranean great tit population. Zool. Stud. 55, 13 (2016).


    Google Scholar
     

  • 47.

    Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: Experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • 48.

    Stier, A., Massemin, S., Zahn, S., Tissier, M. L. & Criscuolo, F. Starting with a handicap: Effects of asynchronous hatching on growth rate, oxidative stress and telomere dynamics in free-living great tits. Oecologia 179, 999–1010 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 49.

    Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).

    PubMed 

    Google Scholar
     

  • 50.

    Darras, V. M. The role of maternal thyroid hormones in avian embryonic development. Front. Endocrinol. 10, 66 (2019).


    Google Scholar
     

  • 51.

    Huget-Penner, S. & Feig, D. S. Maternal thyroid disease and its effects on the fetus and perinatal outcomes. Prenat. Diagn. https://doi.org/10.1002/pd.5684 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Kulkami, S. S. & Buchholz, K. R. Beyond synergy: Corticosterone and thyroid hormone have numerous interaction effects on gene regulation in Xenopus tropicalis tadpoles. Endocrinology 153, 5309–5324 (2012).


    Google Scholar
     

  • 53.

    Watanabe, Y., Grommern, S. V. H. & de Groef, B. Corticotropin-releasing hormone: Mediator of vertebrate life stage trasitions?. Gen. Comp. Endocrinol. 228, 60–68 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 190, 68–75 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Flood, D. E. K., Fernandino, J. I. & Langlois, V. S. Thyroid hormones in male reproductive develoment: Evidence for direct crosstalk between the androgen and thyroid hormones axes. Gen. Comp. Endocrinol. 192, 2–14 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Duarte-Guterman, P., Navarro-Martín, L. & Trudeau, V. L. Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen. Comp. Endocrinol. 203, 69–85 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Stier, A. et al. How to measure mitochondrial function in birds using red blood cells: A case study in the king penguin and perspectives in ecology and evolution. Methods Ecol. Evol. 8, 1172–1182 (2017).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *