The first possible choristoderan trackway from the Lower Cretaceous Daegu Formation of South Korea and its implications on choristoderan locomotion


  • 1.

    Kim, J. Y. & Huh, M. Dinosaurs, Birds, and Pterosaurs of Korea: A Paradise of Mesozoic Vertebrates (Springer, Berlin, 2018).


    Google Scholar
     

  • 2.

    Park, W. M., Lockley, M. G., Kim, J. Y. & Kim, K. S. Anuran (frog) trackways from the Cretaceous of Korea. Cretac. Res. 86, 135–148 (2018).


    Google Scholar
     

  • 3.

    Kim, J. Y. et al. A paradise of Mesozoic birds: the world’s richest and most diverse Cretaceous bird track assemblage from the Early Cretaceous Haman Formation of the Gajin tracksite, Jinju Korea. Ichnos 19, 28–42 (2012).


    Google Scholar
     

  • 4.

    Kim, K. S., Lim, J.-D., Lockley, M. G., Xing, L. & Choi, Y. Korean trackway of a hopping, mammaliform trackmaker is first from the Cretaceous of Asia. Cretac. Res. 74, 188–191 (2017).


    Google Scholar
     

  • 5.

    Leonardi, G. Discussion of the terms and methods. In Glossary and Manual of Tetrapod Footprint Palaeoichnology (ed. Leonardi, G.) 43–51 (Republica Federativa do Brasil, Ministerio das Minas e Energia, Departamento Nacional da Producao Mineral, Rio de Janeiro, 1987).


    Google Scholar
     

  • 6.

    Avanzini, M. et al. Turtle tracks from the Late Jurassic of Asturias, Spain. Acta Palaeontol. Pol. 50, 743–755 (2005).


    Google Scholar
     

  • 7.

    Marsicano, C. A., Wilson, J. A. & Smith, R. M. H. A temnospondyl trackway from the early Mesozoic of western Gondwana and its implications for basal tetrapod locomotion. PLoS ONE 9, e103255 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Lee, Y.-N. et al. Unusual locomotion behaviour preserved within a crocodyliform trackway from the Upper Cretaceous Bayanshiree Formation of Mongolia and its palaeobiological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109239 (2019).


    Google Scholar
     

  • 9.

    Mazin, J.-M., Billon-Bruyat, J.-P., Hantzpergue, P. & Lafaurie, G. Ichnological evidence for quadrupedal locomotion in pterodactyloid pterosaurs: trackways from the Late Jurassic of Crayssac (southwestern France). Geol. Soc. Lond. Spec. Publ. 217, 283–296 (2003).

    ADS 

    Google Scholar
     

  • 10.

    Kang, H. C. & Paik, I. S. Review on the geological ages of the formations in the Gyeongsang Basin, Korea. J. Geol. Soc. Korea 49, 17–29 (2013).

    CAS 

    Google Scholar
     

  • 11.

    Lee, T.-H., Park, K.-H. & Yi, K. Nature and evolution of the Cretaceous basins in the eastern margin of Eurasia: a case study of the Gyeongsang Basin, SE Korea. J. Asian Earth Sci. 166, 19–31 (2018).

    ADS 

    Google Scholar
     

  • 12.

    Falkingham, P. L., Marty, D. & Richter, A. Introduction. In Dinosaur tracks: The Next Steps (eds Falkingham, P. L. et al.) 3–11 (Indiana University Press, Bloomington, 2016).


    Google Scholar
     

  • 13.

    Simpson, E. L. et al. A crocodylomorph track in the Upper Cretaceous Capping Sandstone Member of the Wahweap Formation, Grand Staircase-Escalante National Monument, Utah, U.S.A. In Crocodyle Tracks and Traces (eds Milan, J. et al.) 165–169 (New Mexico Museum of Natural History and Science Bulletin, Albuquerque, 2010).


    Google Scholar
     

  • 14.

    Hitchcock, E. An attempt to name, classify, and describe the animals that made the fossil footmarks of New England. In Proceedings of the 6th Annual Meeting of the Association of American Geologists and Naturalists 23–25 (1845).

  • 15.

    Kubo, T. In quest of the Pteraichnus trackmaker: comparisons to modern crocodilians. Acta Palaeontol. Pol. 53, 405–412 (2008).


    Google Scholar
     

  • 16.

    Mazin, J.-M. & Pouech, J. The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs. Geobios 58, 39–53 (2020).


    Google Scholar
     

  • 17.

    Lichtig, A. J., Lucas, S. G., Klein, H. & Lovelace, D. M. Triassic turtle tracks and the origin of turtles. Hist. Biol. 30, 1112–1122 (2018).


    Google Scholar
     

  • 18.

    Foster, J. R. Salamander tracks (Ambystomichnus?) from the Cathedral Bluffs Tongue of the Wasatch Formation (Eocene), northeastern Green River Basin, Wyoming. J. Paleontol. 75, 901–904 (2001).


    Google Scholar
     

  • 19.

    Lee, H.-J., Lee, Y.-N., Fiorillo, A. R. & Lü, J. Lizards ran bipedally 110 million years ago. Sci. Rep. 8, 2617 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Kim, K. S. et al. First report of lacertiform (lizard) tracks from the Cretaceous of Asia. Cretac. Res. 69, 62–70 (2017).


    Google Scholar
     

  • 21.

    Kim, K. S. et al. Largest cretaceous lizard track assemblage, new morphotypes and longest trackways comprise diverse components of an exceptional Korean Konservat-Lagerstätten ichnofauna. Sci. Rep. 9, 13278 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Pianka, E. R. & Vitt, L. J. Lizards: Windows to the Evolution of Diversity (University of California Press, Berkeley, 2003).


    Google Scholar
     

  • 23.

    Lockley, M. G. & Hunt, A. P. Ceratopsid tracks and associated ichnofauna from the Laramie Formation (Upper Cretaceous: Maastrichtian) of Colorado. J. Vertebr. Paleontol. 15, 592–614 (1995).


    Google Scholar
     

  • 24.

    Erickson, B. R. The lepidosaurian reptile Champsosaurus in North America. 1, (Monograph of the Science Museum of Minnesota (Paleontology), 1972).

  • 25.

    Falkingham, P. L., Margetts, L., Smith, I. M. & Manning, P. L. Reinterpretation of palmate and semi-palmate (webbed) fossil tracks; insights from finite element modelling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 69–76 (2009).


    Google Scholar
     

  • 26.

    Evans, S. E. Jurassic lizard assemblages. Rev. Paleobiol. 7, 55–65 (1993).


    Google Scholar
     

  • 27.

    Evans, S. E. & Klembara, J. A choristoderan reptile (Reptilia: Diapsida) from the Lower Miocene of Northwest Bohemia (Czech Republic). J. Vertebr. Paleontol. 25, 171–184 (2005).


    Google Scholar
     

  • 28.

    Evans, S. E. & Hecht, M. K. A history of an extinct reptilian clade, the Choristodera: longevity, Lazarus-taxa, and the fossil record. In Evolutionary Biology (eds. Hecht, M. K., MacIntyre, R. J. & Clegg, M. T.) 323–338 (Plenum Press, 1993).

  • 29.

    Lockley, M. G. et al. The fossil record of crocodilian tracks and traces: an overview. In Crocodyle tracks and traces (eds. Milan, J., Lucas, S. G. & Lockley, M. G.) 1–13 (New Mexico Museum of Natural History and Science, Bulletin, 2010).

  • 30.

    Matsumoto, R., Evans, S. E. & Shimojima, S. The dentary of a Choristodere (Reptilia: Archosauromorpha) from the Okurodani Formation, Tetori Group (Lower Cretaceous) of Japan. Bull. Natl. Sci. Museum 28, 43–48 (2002).


    Google Scholar
     

  • 31.

    Gao, K. & Ksepka, D. T. Osteology and taxonomic revision of Hyphalosaurus (Diapsida: Choristodera) from the Lower Cretaceous of Liaoning, China. J. Anat. 212, 747–768 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Katsura, Y. Fusion of sacrals and anatomy in Champsosaurus (Diapsida, Choristodera). Hist. Biol. 19, 263–271 (2007).


    Google Scholar
     

  • 33.

    Wang, X., Miao, D. & Zhang, Y. Cannibalism in a semi-aquatic reptile from the Early Cretaceous of China. Chin. Sci. Bull. 50, 281–283 (2005).


    Google Scholar
     

  • 34.

    Matsumoto, R., Evan, S. E. & Manabe, M. The choristoderan reptile Monjurosuchus from the Early Cretaceous of Japan. Acta Palaeontol. Pol. 52, 329–350 (2007).


    Google Scholar
     

  • 35.

    Matsumoto, R. et al. Revealing body proportions of the enigmatic choristodere Khurendukhosaurus from Mongolia. Acta Palaeontol. Pol. 64, 363–377 (2019).


    Google Scholar
     

  • 36.

    Amiot, R. et al. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates. Proc. Natl. Acad. Sci. USA 108, 5179–5183 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Matsumoto, R., Manabe, M. & Evans, S. E. The first record of a long-snouted choristodere (Reptilia, Diapsida) from the Early Cretaceous of Ishikawa Prefecture, Japan. Hist. Biol. 27, 583–594 (2015).


    Google Scholar
     

  • 38.

    Gao, K., Evans, S., Ji, Q., Norell, M. A. & Ji, S. Exceptional fossil material of a semi-aquatic reptile from China: the resolution of an enigma. J. Vertebr. Paleontol. 20, 417–421 (2000).


    Google Scholar
     

  • 39.

    Matsumoto, R., Buffetaut, E., Escuillié, F., Hervet, S. & Evans, S. E. New material of the choristodere Lazarussuchus (Diapsida, Choristodera) from the Paleocene of France. J. Vertebr. Paleontol. 33, 319–339 (2013).


    Google Scholar
     

  • 40.

    Milan, J. & Hedegaard, R. Interspecific variation in tracks and trackways from extant crocodylians. In Crocodyle Tracks and Traces (eds. Milan, J. et al.) 15–29 (New Mexico Museum of Natural History Bulletin, Mexico, 2010).


    Google Scholar
     

  • 41.

    Farlow, J. O. et al. Trackways of the American crocodile (Crocodylus acutus) in northwestern Costa Rica: implications for crocodylian ichnology. Ichnos 25, 30–65 (2018).


    Google Scholar
     

  • 42.

    Katsura, Y. Sexual dimorphism in Champsosaurus (Diapsida, Choristodera). Lethaia 37, 245–253 (2004).


    Google Scholar
     

  • 43.

    Katsura, Y. Ontogenetic change of bone microstructures and its ethological implication in Champsosaurus (Diapsida, Choristodera). Hist. Biol. 22, 380–386 (2010).


    Google Scholar
     

  • 44.

    Romano, M., Citton, P. & Nicosia, U. Corroborating trackmaker identification through footprint functional analysis: the case study of Ichniotherium and Dimetropus. Lethaia 49, 102–116 (2016).


    Google Scholar
     

  • 45.

    Citton, P., Díaz-Martínez, I., de Valais, S. & Cónsole-Gonella, C. Triassic pentadactyl tracks from the Los Menucos Group (Río Negro province, Patagonia Argentina): possible constraints on the autopodial posture of Gondwanan trackmakers. PeerJ 6, e5358 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Citton, P., Carluccio, R., Nicolosi, I. & Nicosia, U. Re-evaluation of Chelichnus tazelwürmi, a non mammalian therapsid-grade track from the Upper Permian Arenaria di Val Gardena. Hist. Biol. 31, 322–340 (2019).


    Google Scholar
     

  • 47.

    Reilly, S. M. & Elias, J. A. Locomotion in Alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm. J. Exp. Biol. 201, 2559–2574 (1998).

    PubMed 

    Google Scholar
     

  • 48.

    Kubo, T. & Ozaki, M. Does pace angulation correlate with limb posture?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 275, 54–58 (2009).


    Google Scholar
     

  • 49.

    Lee, Y. J. & Lee, I. K. Explanatory text of the geological map of Eon Yang Sheet (Geological Survey of Korea, Seoul, 1972).

  • 50.

    Kim, H. J., Paik, I. S. & Lim, J.-D. Dinosaur track-bearing deposits at Petroglyphs of Bangudae Terrace in Daegokcheon stram, Ulju (National Treasure): occurrences, paleoenvironments, and significance in natural history. Korean J. Cult. Herit. Stud. 47, 46–67 (2014).


    Google Scholar
     

  • 51.

    Paik, I. S., Lee, Y. I., Kim, H. J. & Huh, M. Time, space and structure on the Korea Cretaceous Dinosaur Coast: Cretaceous stratigraphy, geochronology, and paleoenvironments. Ichnos 19, 6–16 (2012).


    Google Scholar
     

  • 52.

    Paik, I. S. & Kim, H. J. Playa lake and sheetflood deposits of the Upper Cretaceous Jindong Formation, Korea: occurrences and palaeoenvironments. Sediment. Geol. 187, 83–103 (2006).

    ADS 

    Google Scholar
     

  • 53.

    Oh, C., Kim, K., Paik, I. S. & Lim, J.-D. Cretaceous conifer woods of Korea: occurrences and palaeobiological implications. Rev. Palaeobot. Palynol. 164, 67–83 (2011).


    Google Scholar
     

  • 54.

    Romano, M., Citton, P. & Avanzini, M. A review of the concepts of ‘axony’ and their bearing on tetrapod ichnology. Hist. Biol. 32, 611–619 (2020).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *