• 1.

    Pabi, S., Van Dijken, G. L. & Arrigo, K. R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. 113, 1998–2006 (2008).


    Google Scholar
     

  • 2.

    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochemical Cycles 24, GB3016 (2010).

    ADS 

    Google Scholar
     

  • 3.

    Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    de Baar, H. J. W. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocea. Nature 373, 412–415 (1995).

    ADS 

    Google Scholar
     

  • 6.

    Tremblay, J. -É & Gagnon, J. The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. In Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions (eds Nihoul, J. C. J. & Kostianoy, A. G.) 73–89 (Springer, Berlin, 2009).


    Google Scholar
     

  • 7.

    De Jong, J. T. M. et al. Sources and fluxes of dissolved iron in the Bellingshausen Sea (West Antarctica): the importance of sea ice, icebergs and the continental margin. Mar. Chem. 177, 518–535 (2015).


    Google Scholar
     

  • 8.

    Popova, E. E. et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J. Geophys. Res. Ocean. 117, (2012).

  • 9.

    Nielsdóttir, M. C., Moore, C. M., Sanders, R., Hinz, D. J. & Achterberg, E. P. Iron limitation of the postbloom phytoplankton communities in the Iceland Basin. Glob. Biogeochem. Cycles 23, 1–13 (2009).


    Google Scholar
     

  • 10.

    Ryan-Keogh, T. J. et al. Spatial and temporal development of phytoplankton iron stress in relation to bloom dynamics in the high-latitude North Atlantic Ocean. Limnol. Oceanogr. 58, 533–545 (2013).

    ADS 

    Google Scholar
     

  • 11.

    Taylor, R. L. et al. Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer. J. Geophys. Res. Ocean. 118, 3260–3277 (2013).

    ADS 

    Google Scholar
     

  • 12.

    Findlay, H. S. et al. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic. Polar Res. 34, 24170 (2015).


    Google Scholar
     

  • 13.

    Mills, M. M. et al. Nitrogen limitation of the summer phytoplankton and heterotrophic prokaryote communities in the Chukchi Sea. Front. Mar. Sci. 5, 1–22 (2018).

    ADS 

    Google Scholar
     

  • 14.

    Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 1–9 (2018).

    CAS 

    Google Scholar
     

  • 15.

    Codispoti, L. A. et al. Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production. Prog. Oceanogr. 110, 126–150 (2013).

    ADS 

    Google Scholar
     

  • 16.

    Schauer, U. et al. Variation of measured heat flow through the Fram Strait between 1997 and 2006. In Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate (eds Dickson, R. R. et al.) 65–85 (Springer, Berlin, 2008).


    Google Scholar
     

  • 17.

    Mouginot, J. et al. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science (80-, ) 350, 1357–1361 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R. & Kloster, K. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11, 65–79 (2017).

    ADS 

    Google Scholar
     

  • 19.

    Rijkenberg, M. J. A., Slagter, H. A., Rutgers Van Der Loeff, M., Ooijen, J. Van. & Gerringa, L. J. A. Dissolved Fe in the deep and upper Arctic Ocean with a focus on Fe limitation in the Nansen Basin. Front. Mar. Sci. 5, 88 (2018).


    Google Scholar
     

  • 20.

    de Steur, L. et al. Freshwater fluxes in the East Greenland Current: a decade of observations. Geophys. Res. Lett. 36, 1–5 (2009).


    Google Scholar
     

  • 21.

    Beszczynska-Möller, A., Woodgate, R. A., Lee, C., Melling, H. & Karcher, M. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography 24, 82–99 (2011).


    Google Scholar
     

  • 22.

    Rudels, B. Arctic ocean circulation. in Encyclopedia of Ocean Sciences 262–277 (Elsevier Inc., 2019). https://doi.org/10.1016/B978-0-12-409548-9.11209-6

  • 23.

    Laukert, G. et al. Ocean circulation and freshwater pathways in the Arctic Mediterranean based on a combined Nd isotope, REE and oxygen isotope section across Fram Strait. Geochim. Cosmochim. Acta 202, 285–309 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: a review and perspectives. Prog. Oceanogr. 139, 66–88 (2015).

    ADS 

    Google Scholar
     

  • 25.

    Rudels, B. et al. The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: Results from the Arctic Ocean-02 Oden expedition. J. Mar. Syst. 55, 1–30 (2005).


    Google Scholar
     

  • 26.

    Lalande, C. et al. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait. Deep. Res. Part I Oceanogr. Res. Pap. 114, 78–89 (2016).

    ADS 

    Google Scholar
     

  • 27.

    Norwegian Polar Institute. Sea ice extent in the Fram Strait in September, 1979–2018. Environmental Monitoring of Svalbard and Jan Mayen (MOSJ) (2020). https://www.mosj.no/en/climate/ocean/sea-ice-extent-barents-sea-fram-strait.html. Accessed 10th January 2020.

  • 28.

    de Steur, L., Peralta-Ferriz, C. & Pavlova, O. Freshwater export in the East Greenland current freshens the North Atlantic. Geophys. Res. Lett. 45, 13359–13366 (2018).

    ADS 

    Google Scholar
     

  • 29.

    Marnela, M., Rudels, B., Houssais, M.-N., Beszczynska-Möller, A. & Eriksson, P. B. Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data. Ocean Sci. 9, 499–519 (2013).

    ADS 

    Google Scholar
     

  • 30.

    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).


    Google Scholar
     

  • 31.

    de Steur, L., Hansen, E., Mauritzen, C., Beszczynska-Möller, A. & Fahrbach, E. Impact of recirculation on the East Greenland Current in Fram Strait: Results from moored current meter measurements between 1997 and 2009. Deep. Res. Part I Oceanogr. Res. Pap. 92, 26–40 (2014).

    ADS 

    Google Scholar
     

  • 32.

    Grasshoff, K., Kremlingl, K. & Ehrhardt, M. Methods of Seawater Analysis (Wiley, Hoboken, 1999). https://doi.org/10.1002/9783527613984.


    Google Scholar
     

  • 33.

    Cutter, G. et al. Sampling and Sample-handling Protocols for GEOTRACES Cruises. (2014).

  • 34.

    Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal. Chim. Acta 976, 1–13 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Moore, C. M. Diagnosing oceanic nutrient deficiency. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150290 (2016).

    ADS 

    Google Scholar
     

  • 36.

    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Achterberg, E. P. et al. Natural iron fertilization by the Eyjafjallajökull volcanic eruption. Geophys. Res. Lett. 40, 921–926 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).

    PubMed 

    Google Scholar
     

  • 40.

    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Coupel, P. et al. Pigment signatures of phytoplankton communities in the Beaufort Sea. Biogeosciences 12, 991–1006 (2015).

    ADS 

    Google Scholar
     

  • 42.

    Hong, C. N. et al. Sediment efflux of silicon on the Greenland margin and implications for the marine silicon cycle. Earth Planet. Sci. Lett. 529, 115877 (2020).


    Google Scholar
     

  • 43.

    Tonnard, M. et al. Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01). Biogeosciences 17, 917–943 (2020).

    ADS 

    Google Scholar
     

  • 44.

    Colombo, M., Jackson, S. L., Cullen, J. T. & Orians, K. J. Dissolved iron and manganese in the Canadian Arctic Ocean: On the biogeochemical processes controlling their distributions. Geochim. Cosmochim. Acta (2020). (in press).

  • 45.

    Ardiningsih, I. et al. Natural Fe-binding organic ligands in Fram Strait and over the Northeast Greenland shelf. Mar. Chem. 224, (2020).

  • 46.

    Le Moigne, F. A. C. et al. Sequestration efficiency in the iron-limited North Atlantic: implications for iron supply mode to fertilized blooms. Geophys. Res. Lett. 41, 4619–4627 (2014).

    ADS 

    Google Scholar
     

  • 47.

    Beszczynska-Möller, A. & Wisotzki, A. Physical oceanography during POLARSTERN cruise ARK-XXIII/2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA (2010). https://doi.org/10.1594/PANGAEA.733424.

  • 48.

    Kattner, G. & Ludwichowski, K.-U. Inorganic nutrients measured on water bottle samples during POLARSTERN cruise ARK-XXIII/2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA (2014). https://doi.org/10.1594/PANGAEA.832402.

  • 49.

    Randelhoff, A., Fer, I., Sundfjord, A., Tremblay, J. -É & Reigstad, M. Vertical fluxes of nitrate in the seasonal nitracline of the Atlantic sector of the Arctic Ocean. J. Geophys. Res. Ocean. 121, 3010–3028 (2016).


    Google Scholar
     

  • 50.

    Achterberg, E. P. et al. Iron biogeochemistry in the high latitude North Atlantic ocean. Sci. Rep. 8, 1–15 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Torres-Valdés, S. et al. Export of nutrients from the Arctic Ocean. J. Geophys. Res. 118, 1625–1644 (2013).

    ADS 

    Google Scholar
     

  • 52.

    Ooijen, J. Van, Rijkenberg, M. J. A., Gerringa, L. J. A., Rabe, B. & van der Loeff, M. R. Inorganic nutrients measured on water bottle samples during POLARSTERN cruise PS94 (ARK-XXIX/3). (2016). https://doi.org/10.1594/PANGAEA.868396

  • 53.

    Slagter, H. A. et al. Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM. Mar. Chem. 197, 11–25 (2017).

    CAS 

    Google Scholar
     

  • 54.

    Gerringa, L. J. A., Rijkenberg, M. J. A. & Slagter, H. A. Dissolved iron measured on board with Flow injection analysis and iron-binding dissolved organic ligands from Ultra Clean CTD collected depth profiles during GEOTRACES PS94 Arctic cruise on Polarstern. (2018). https://doi.org/10.1594/PANGAEA.890975

  • 55.

    Krawczyk, D. W. et al. Seasonal succession, distribution, and diversity of planktonic protists in relation to hydrography of the Godthåbsfjord system (SW Greenland). Polar Biol. 41, 2033–2052 (2018).


    Google Scholar
     

  • 56.

    Meire, L. et al. High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 43, 9173–9182 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Nöthig, E.-M. et al. Summertime plankton ecology in Fram Strait: a compilation of long- and short-term observations. Polar Res. 34, 1–18 (2015).


    Google Scholar
     

  • 58.

    Moore, C. M. et al. Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol. Oceanogr. 53, 291–305 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre_Supplementary Material. Nature 551, 242–246 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Kattner, G. & Budéus, G. Nutrient status of the Northeast Water Polynya. J. Mar. Syst. 10, 185–197 (1997).


    Google Scholar
     

  • 61.

    Smith, R. E. H., Gosselin, M. & Taguchi, S. The influence of major inorganic nutrients on the growth and physiology of high arctic ice algae. J. Mar. Syst. 11, 63–70 (1997).


    Google Scholar
     

  • 62.

    Maestrini, S. Y., Rochet, M., Legendre, L. & Demers, S. Nutrient limitation of the bottom-ice microalgal biomass (southeastern Hudson Bay, Canadian Arctic). Lim 31, 969–982 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Ortega-Retuerta, E., Jeffrey, W. H., Ghiglione, J. F. & Joux, F. Evidence of heterotrophic prokaryotic activity limitation by nitrogen in the Western Arctic Ocean during summer. Polar Biol. 35, 785–794 (2012).


    Google Scholar
     

  • 64.

    Mann, E. L. & Chisholm, S. W. Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol. Oceanogr. 45, 1067–1076 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Vernet, M. et al. Influence of phytoplankton advection on the productivity along the Atlantic water inflow to the Arctic Ocean. Front. Mar. Sci. 6(583), 1–18 (2019).


    Google Scholar
     

  • 66.

    Moore, C. M. et al. Iron limits primary productivity during spring bloom development in the central North Atlantic. Glob. Chang. Biol. 12, 626–634 (2006).

    ADS 

    Google Scholar
     

  • 67.

    Browning, T. J. et al. Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnol. Oceanogr. 9999, 1–13 (2019).


    Google Scholar
     

  • 68.

    Blain, S. et al. Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean. Limnol. Oceanogr. 49, 2095–2104 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 69.

    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Ann. Rev. Mar. Sci. 5, 191–215 (2013).

    PubMed 

    Google Scholar
     

  • 71.

    Saito, M. A. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science (80-. ) 345, 1173–1177 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Ward, B. A., Dutkiewicz, S., Moore, C. M. & Follows, M. J. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58, 2059–2075 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 73.

    Hattermann, T., Isachsen, P. E., Von Appen, W. J., Albretsen, J. & Sundfjord, A. Eddy-driven recirculation of Atlantic Water in Fram Strait. Geophys. Res. Lett. 43, 3406–3414 (2016).

    ADS 

    Google Scholar
     

  • 74.

    Klunder, M. B. et al. Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J. Geophys. Res. Ocean. 117, 1–18 (2012).


    Google Scholar
     

  • 75.

    Charette, M. A. et al. The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean. J. Geophys. Res. Ocean. 125, e2019JC015920 (2020).

    ADS 

    Google Scholar
     

  • 76.

    Yamamoto-Kawai, M., Carmack, E. & McLaughlin, F. Nitrogen balance and Arctic throughflow. Nature 443, 43 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Rijkenberg, M. J. A. et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS ONE 9, 1–14 (2014).


    Google Scholar
     

  • 78.

    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. Ocean. 109, 1–20 (2004).


    Google Scholar
     

  • 79.

    Randelhoff, A., Sundfjord, A. & Reigstad, M. Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys. Res. Lett. 42, 3442–3449 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 80.

    Randelhoff, A. et al. Pan-Arctic ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. 7, 1–15 (2020).


    Google Scholar
     

  • 81.

    Rafter, P. A., Sigman, D. M. & Mackey, K. R. M. Recycled iron fuels new production in the eastern equatorial Pacific Ocean. Nat. Commun. 8, 1100 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Stohl, A. et al. Arctic smoke: record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys. 7, 511–534 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    Marsay, C. M. et al. Concentrations, provenance and flux of aerosol trace elements during US GEOTRACES Western Arctic cruise GN01. Chem. Geol. 502, 1–14 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 84.

    Conca, E. et al. Source identification and temporal evolution of trace elements in PM10 collected near to Ny-Ålesund (Norwegian Arctic). Atmos. Environ. 203, 153–165 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 85.

    Kadko, D. et al. The residence times of trace elements determined in the surface Arctic Ocean during the 2015 US Arctic GEOTRACES expedition. Mar. Chem. 208, 56–69 (2019).

    CAS 

    Google Scholar
     

  • 86.

    Wehrmann, L. M. et al. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): evidence for a benthic recycling-transport mechanism. Geochim. Cosmochim. Acta 141, 628–655 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 87.

    Bown, J. et al. Evidences of strong sources of DFe and DMn in Ryder Bay, Western Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170172 (2018).

    ADS 

    Google Scholar
     

  • 88.

    Bucciarelli, E., Blain, S. & Tréguer, P. Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean). Mar. Chem. 73, 21–36 (2001).

    CAS 

    Google Scholar
     

  • 89.

    Nishino, S. et al. Enhancement/Reduction of biological pump depends on ocean circulation in the sea-ice reduction regions of the Arctic Ocean. J. Oceanogr. 67, 305–314 (2011).

    CAS 

    Google Scholar
     

  • 90.

    Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B. & Rigor, I. G. Increased fluxes of shelf-derived materials to the central arctic ocean. Sci. Adv. 4, 1–10 (2018).


    Google Scholar
     

  • 91.

    Mayot, N. et al. Springtime export of Arctic Sea ice influences phytoplankton production in the Greenland Sea. J. Geophys. Res. Ocean. 125, 1–16 (2020).


    Google Scholar
     

  • 92.

    Randelhoff, A. et al. The evolution of light and vertical mixing across a phytoplankton ice-edge bloom. Elem. Sci. Anthr. 7, 1–19 (2019).


    Google Scholar
     

  • 93.

    Kahru, M., Brotas, V., Manzano-Sarabia, M. & Mitchell, B. G. Are phytoplankton blooms occurring earlier in the Arctic?. Glob. Chang. Biol. 17, 1733–1739 (2011).

    ADS 

    Google Scholar
     

  • 94.

    Ardyna, M. et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anthr. 8, 30 (2020).


    Google Scholar
     

  • 95.

    Tremblay, J. É et al. Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J. Geophys. Res. Ocean. 113, 1–14 (2008).


    Google Scholar
     

  • 96.

    Castro de la Guardia, L. et al. Assessing the role of high-frequency winds and sea ice loss on arctic phytoplankton blooms in an ice-ocean-biogeochemical model. J. Geophys. Res. Biogeosci. 124, 2728–2750 (2019).

    ADS 

    Google Scholar
     

  • 97.

    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).

    ADS 

    Google Scholar
     

  • 98.

    Wang, Q. et al. Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophys. Res. Lett. 47, e2019GL086682 (2020).

    ADS 

    Google Scholar
     

  • 99.

    Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, 1–6 (2008).


    Google Scholar
     

  • 100.

    Carmack, E. C., Macdonald, R. W. & Steve, J. Phytoplankton productivity on the Canadian Shelf of the Beaufort Sea. Mar. Ecol. Prog. Ser. 277, 37–50 (2004).

    ADS 

    Google Scholar
     

  • 101.

    Lasternas, S. & Agustí, S. Phytoplankton community structure during the record Arctic ice-melting of summer 2007. Polar Biol. 33, 1709–1717 (2010).


    Google Scholar
     

  • 102.

    Harding, K. et al. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc. Natl. Acad. Sci. 115, 13371–13375 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Sipler, R. E. et al. Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget. Limnol. Oceanogr. 2, 159–166 (2017).


    Google Scholar
     

  • 104.

    Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: from genes to ecosystems. Annu. Rev. Mar. Sci. 3, 197–225 (2011).

    ADS 

    Google Scholar
     

  • 105.

    Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth Science Data. Eos (Washington, DC) 88, 14–17 (2007).

    ADS 

    Google Scholar
     

  • 106.

    Schaffer, J. et al. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 8, 543–557 (2016).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *