The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds


  • 1.

    Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Creager, K. C. & Jordan, T. H. Slab penetration into the lower mantle. J. Geophys. Res. 89, 3031–3049 (1984).

    ADS 

    Google Scholar
     

  • 4.

    Cartigny, P. Stable isotopes and the origin of diamond. Elements 1, 79–84 (2005).

    CAS 

    Google Scholar
     

  • 5.

    Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, 3997–4006 (2015).

    ADS 

    Google Scholar
     

  • 6.

    Sobolev, V. S. & Sobolev, N. V. New proof of very deep subsidence of eclogitized crustal rocks. Dokl. Acad. Nauk SSSR. 250, 88–90 (1982).

    ADS 

    Google Scholar
     

  • 7.

    Duncan, M. S. & Dasgupta, R. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat. Geosci. 10, 387–392 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Li, K., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Walter, M. J. et al. Primary carbonatite melt from deeply subducted oceanic crust. Nature 454, 622–625 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Kiseeva, E. S. et al. Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology 41, 883–886 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Ickert, R. B., Stachel, T., Stern, R. A. & Harris, J. W. Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds. Geochem. Perspect. Lett. 1, 65–74 (2015).


    Google Scholar
     

  • 13.

    Burnham, A. D. et al. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet. Sci. Lett. 432, 374–380 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Stachel, T., Brey, G. P. & Harris, J. W. Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib. Mineral. Petrol. 140, 1–15 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Stachel, T., Harris, J. W., Brey, G. P. & Joswig, W. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib. Mineral. Petrol. 140, 16–27 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Cooper, K. M., Eiler, J. M., Sims, K. W. W. & Langmuir, C. H. Distribution of recycled crust within the upper mantle: insights from the oxygen isotope composition of MORB from the Australian–Antarctic Discordance. Geochem. Geophys. Geosyst. 10, Q12004 (2009).

    ADS 

    Google Scholar
     

  • 17.

    Cooper, K. M., Eiler, J. M., Asimow, P. D. & Langmuir, C. H. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet. Sci. Lett. 220, 297–316 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Eiler, J. M., Schiano, P., Kitchen, N. & Stolper, E. M. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 403, 530–534 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Regier, M. E. et al. An oxygen isotope test for the origin of Archean mantle roots. Geochem. Perspect. Lett. 9, 6–10 (2018).


    Google Scholar
     

  • 20.

    Riches, A. J. V. et al. In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton. Geochim. Cosmochim. Acta 174, 345–359 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Grütter, H. S., Gurney, J. J., Menzies, A. H. & Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77, 841–857 (2004).

    ADS 

    Google Scholar
     

  • 22.

    Ickert, R. B., Stachel, T., Stern, R. A. & Harris, J. W. Diamond from recycled crustal carbon documented by coupled δ18O–δ13C measurements of diamonds and their inclusions. Earth Planet. Sci. Lett. 364, 85–97 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Li, L., Zheng, Y. F., Cartigny, P. & Li, J. Anomalous nitrogen isotopes in ultrahigh-pressure metamorphic rocks from the Sulu orogenic belt: effect of abiotic nitrogen reduction during fluid-rock interaction. Earth Planet. Sci. Lett. 403, 67–78 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Li, L., Bebout, G. E. & Idleman, B. D. Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185: insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochim. Cosmochim. Acta 71, 2344–2360 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., Ohtani, E. & Kamenetsky, V. S. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J. Petrol. 54, 1555–1583 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Bobrov, A. V., Litvin, Y. A., Bindi, L. & Dymshits, A. M. Phase relations and formation of sodium-rich majoritic garnet in the system Mg3Al2Si3O12–Na2MgSi5O12 at 7.0 and 8.5 GPa. Contrib. Mineral. Petrol. 156, 243–257 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472, 209–212 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Ringwood, A. E. Composition and Petrology of the Earth’s Mantle (McGraw-Hill, 1975).

  • 29.

    Stachel, T., Harris, J. W., Aulbach, S. & Deines, P. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds. Contrib. Mineral. Petrol. 142, 465–475 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Palot, M., Pearson, D. G., Stern, R. A., Stachel, T. & Harris, J. W. Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochim. Cosmochim. Acta 139, 26–46 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Cartigny, P., Palot, M., Thomassot, E. & Harris, J. W. Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42, 699–732 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Katsura, T. & Ito, E. Determination of Fe–Mg partitioning between perovskite and magnesiowüstite. Geophys. Res. Lett. 23, 2005–2008 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Wood, B. J. Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet. Sci. Lett. 174, 341–354 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Stachel, T. Diamonds from the asthenosphere and the transiton zone. Eur. J. Mineral. 13, 883–892 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Rohrbach, A., Ghosh, S., Schmidt, M. W., Wijbrans, C. H. & Klemme, S. The stability of Fe–Ni carbides in the Earth’s mantle: evidence for a low Fe–Ni–C melt fraction in the deep mantle. Earth Planet. Sci. Lett. 388, 211–221 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Faccenda, M. Water in the slab: a trilogy. Tectonophysics 614, 1–30 (2014).

    ADS 

    Google Scholar
     

  • 40.

    Zhu, F., Li, J., Liu, J., Dong, J. & Liu, Z. Metallic iron limits silicate hydration in Earth’s transition zone. Proc. Natl Acad. Sci. USA 116, 22526–22530 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Marty, B. & Zimmermann, L. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta 63, 3619–3633 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Beard, B. L. et al. Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib. Mineral. Petrol. 125, 293–310 (1996).

    ADS 

    Google Scholar
     

  • 43.

    Stachel, T. & Luth, R. W. Diamond formation — where, when and how? Lithos 220–203, 200–220 (2015).

    ADS 

    Google Scholar
     

  • 44.

    Irifune, T. & Ringwood, A. E. Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet. Sci. Lett. 86, 365–376 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Ono, S., Ito, E. & Katsura, T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett. 190, 57–63 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Ickert, R. B. & Stern, R. A. Matrix corrections and error analysis in high-precision SIMS 18O/16O measurements of Ca–Mg–Fe garnet. Geostand. Geoanal. Res. 37, 429–448 (2013).

    CAS 

    Google Scholar
     

  • 47.

    Wang, Z., Bucholz, C., Skinner, B., Shimizu, N. & Eiler, J. Oxygen isotope constraints on the origin of high-Cr garnets from kimberlites. Earth Planet. Sci. Lett. 312, 337–347 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Mattey, D., Lowry, D. & Macpherson, C. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 128, 231–241 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Beyer, C. & Frost, D. J. The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle. Earth Planet. Sci. Lett. 461, 30–39 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    McDonough, W. F. & Rudnick, R. L. Mineralogy and composition of the upper mantle. Rev. Mineral. Geochem. 37, 139–164 (1998).

    CAS 

    Google Scholar
     

  • 51.

    Zheng, Y.-F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57, 1079–1091 (1993); erratum 57, 3199 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Lowry, D., Mattey, D. P. & Harris, J. W. Oxygen isotope composition of syngenetic inclusions in diamond from the Finsch Mine, RSA. Geochim. Cosmochim. Acta 63, 1825–1836 (1999).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *