• 1.

    Bert, C. & Durante, M. Motion in radiotherapy: Particle therapy. Phys. Med. Biol. 56, R113–R144 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Knopf, A.-C. et al. Required transition from research to clinical application: Report on the 4D treatment planning workshops 2014 and 2015. Phys. Med. 32, 874–882 (2016).

    PubMed 

    Google Scholar
     

  • 3.

    Riboldi, M., Orecchia, R. & Baroni, G. Real-time tumour tracking in particle therapy: Technological developments and future perspectives. Lancet Oncol. 13, e383–e391 (2012).

    PubMed 

    Google Scholar
     

  • 4.

    Shimizu, S. et al. A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size. PLoS ONE 9, e94971 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Fattori, G. et al. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring. Technol. Cancer Res. Treat. 13, 517–528 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Low, D. A. in Advances in Radiation Oncology 60, 41–67 (Springer International Publishing, 2017).

  • 7.

    Oborn, B. M. et al. Future of medical physics: Real-time MRI-guided proton therapy. Med. Phys. 44, e77–e90 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Keall, P. J., Kini, V. R., Vedam, S. S. & Mohan, R. Motion adaptive x-ray therapy: A feasibility study. Phys. Med. Biol. 46, 1–10 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M. J. & Adler, J. R. Robotic motion compensation for respiratory movement during radiosurgery. Comput. Aided Surg. 5, 263–277 (2010).


    Google Scholar
     

  • 10.

    Kamino, Y. et al. Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int. J. Radiat. Oncol. Biol. Phys. 66, 271–278 (2006).

    PubMed 

    Google Scholar
     

  • 11.

    Buzurovic, I., Huang, K., Yu, Y. & Podder, T. K. A robotic approach to 4D real-time tumor tracking for radiotherapy. Phys. Med. Biol. 56, 1299–1318 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Lang, S. et al. Development and evaluation of a prototype tracking system using the treatment couch. Med. Phys. 41, 021720–021727 (2014).

    PubMed 

    Google Scholar
     

  • 13.

    Depuydt, T. et al. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother. Oncol. 98, 365–372 (2011).

    PubMed 

    Google Scholar
     

  • 14.

    Sawant, A. et al. Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med. Phys. 35, 2050–2061 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Hansen, R. et al. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator. Med. Phys. 43, 2387–2398 (2016).

    PubMed 

    Google Scholar
     

  • 16.

    Ehrbar, S. et al. Comparison of multi-leaf collimator tracking and treatment-couch tracking during stereotactic body radiation therapy of prostate cancer. Radiother. Oncol. 125, 445–452 (2017).

    PubMed 

    Google Scholar
     

  • 17.

    Kurz, C. et al. Medical physics challenges in clinical MR-guided radiotherapy. Radiat. Oncol. 15, 93 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Zhang, Y., Knopf, A., Tanner, C. & Lomax, A. J. Online image guided tumour tracking with scanned proton beams: A comprehensive simulation study. Phys. Med. Biol. 59, 7793–7817 (2014).

    PubMed 

    Google Scholar
     

  • 19.

    Lüchtenborg, R., Saito, N., Durante, M. & Bert, C. Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy. Med. Phys. 38, 5448–5458 (2011).

    PubMed 

    Google Scholar
     

  • 20.

    Actis, O., Mayor, A., Meer, D. & Weber, D. C. Precise beam delivery for proton therapy with dynamic energy modulation. J. Phys. Conf. Ser. 1067, 092002 (2018).


    Google Scholar
     

  • 21.

    Haberer, T., Becher, W., Schardt, D. & Kraft, G. Magnetic scanning system for heavy ion therapy. Nucl. Inst. Methods Phys. Res. A 330, 296–305 (1993).

    ADS 

    Google Scholar
     

  • 22.

    Grözinger, S. O., Li, Q., Rietzel, E., Haberer, T. & Kraft, G. 3D online compensation of target motion with scanned particle beam. Radiother. Oncol. 73(Suppl 2), S77–S79 (2004).

    PubMed 

    Google Scholar
     

  • 23.

    Bert, C. et al. Dosimetric precision of an ion beam tracking system. Radiat. Oncol. 5, 61 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Saito, N. et al. Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams. Phys. Med. Biol. 54, 4849–4862 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Wan, W. et al. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries. Phys. Rev. Spec. Topics Accel. Beams https://doi.org/10.1103/PhysRevSTAB.18.103501 (2015).

    Article 

    Google Scholar
     

  • 26.

    Gerbershagen, A., Meer, D., Schippers, J. M. & Seidel, M. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets. Z. für Med. Phys. 26, 224–237 (2016).


    Google Scholar
     

  • 27.

    Gerbershagen, A., Calzolaio, C., Meer, D., Sanfilippo, S. & Schippers, M. The advantages and challenges of superconducting magnets in particle therapy. Supercond. Sci. Technol. 29, 083001–083016 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Schippers, M., Meer, D. & Gerbershagen, A. Particle therapy gantry with an energy degrader and an achromatic final bending system—European Patent Office—EP 3167933 A1. 1–14 (2017).

  • 29.

    Bert, C. & Rietzel, E. 4D treatment planning for scanned ion beams. Radiat. Oncol. 2, 24 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    van de Water, S., Kreuger, R., Zenklusen, S., Hug, E. & Lomax, A. J. Tumour tracking with scanned proton beams: Assessing the accuracy and practicalities. Phys. Med. Biol. 54, 6549–6563 (2009).

    PubMed 

    Google Scholar
     

  • 31.

    Zhang, Y., Huth, I., Wegner, M., Weber, D. C. & Lomax, A. J. An evaluation of rescanning technique for liver tumour treatments using a commercial PBS proton therapy system. Radiother. Oncol. 121, 281–287 (2016).

    PubMed 

    Google Scholar
     

  • 32.

    Boye, D., Lomax, T. & Knopf, A. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study. Med. Phys. 40, 061702–061711 (2013).

    PubMed 

    Google Scholar
     

  • 33.

    Shackleford, J. A., Kandasamy, N. & Sharp, G. C. On developing B-spline registration algorithms for multi-core processors. Phys. Med. Biol. 55, 6329–6351 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Schippers, J. M. et al. The use of protons in cancer therapy at PSI and related instrumentation. J. Phys. 41, 61–71 (2006).

    CAS 

    Google Scholar
     

  • 35.

    Klimpki, G. et al. The impact of pencil beam scanning techniques on the effectiveness and efficiency of rescanning moving targets. Phys. Med. Biol. 63, 145006–145014 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Chaudhri, N. et al. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection. Phys. Med. Biol. 55, 3499–3513 (2010).

    PubMed 

    Google Scholar
     

  • 37.

    Weber, U., Becher, W. & Kraft, G. Depth scanning for a conformal ion beam treatment of deep seated tumours. Phys. Med. Biol. 45, 3627–3641 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Pedroni, E. et al. The 200-MeV proton therapy project at the Paul Scherrer Institute: Conceptual design and practical realization. Med. Phys. 22, 37–53 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Titt, U. et al. Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency. Phys. Med. Biol. 55, 7097–7106 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Michiels, S. et al. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization. Radiother. Oncol. 128, 161–166 (2018).

    PubMed 

    Google Scholar
     

  • 41.

    Pedroni, E. et al. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams. Phys. Med. Biol. 50, 541–561 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Zenklusen, S. M., Pedroni, E. & Meer, D. A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new gantry 2 at PSI. Phys. Med. Biol. 55, 5103–5121 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Bernatowicz, K., Lomax, A. J. & Knopf, A. Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients. Phys. Med. Biol. 58, 7905–7920 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Bula, C., Belosi, M. F., Eichin, M., Hrbacek, J. & Meer, D. Dynamic beam current control for improved dose accuracy in PBS proton therapy. Phys. Med. Biol. 64, 175003–175015 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Eley, J. G., Newhauser, W. D., Lüchtenborg, R., Graeff, C. & Bert, C. 4D optimization of scanned ion beam tracking therapy for moving tumors. Phys. Med. Biol. 59, 3431–3452 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Graeff, C. Motion mitigation in scanned ion beam therapy through 4D-optimization. Phys. Med. 30, 570–577 (2014).

    PubMed 

    Google Scholar
     

  • 47.

    Wolf, M. E., Anderle, K., Durante, M. & Graeff, C. Robust treatment planning with 4D intensity modulated carbon ion therapy for multiple targets in stage IV non-small cell lung cancer. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/aba1a3 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Palaniappan, P. et al. Deformable image registration of the treatment planning CT with proton radiographies in perspective of adaptive proton therapy. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/ab8fc3 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Landry, G. & Hua, C. H. Current state and future applications of radiological image guidance for particle therapy. Med. Phys. 45, 685–711 (2018).


    Google Scholar
     

  • 50.

    Hsu, A., Miller, N. R., Evans, P. M., Bamber, J. C. & Webb, S. Feasibility of using ultrasound for real-time tracking during radiotherapy. Med. Phys. 32, 1500–1512 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Giger, A. T. et al. Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/abaa26 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Wolthaus, J. W. H., Sonke, J. J., van Herk, M. & Damen, E. M. F. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registrationa. Med. Phys. 35, 3998–4011 (2008).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *