Thermodynamic feasibility of the four-stage chloride-induced depassivation mechanism of iron


  • 1.

    Gunay, H. B., Ghods, P., Isgor, O. B., Carpenter, G. J. C. & Wu, X. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS. Appl. Surf. Sci. 274, 195–202 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Ghods, P., Isgor, O. B., Brown, J. R., Bensebaa, F. & Kingston, D. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl. Surf. Sci. 257, 4669–4677 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Ghods, P., Isgor, O. B., Bensebaa, F. & Kingston, D. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution. Corros. Sci. 58, 159–167 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Chen, W., Du, R.-G., Ye, C.-Q., Zhu, Y.-F. & Lin, C.-J. Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques. Electrochim. Acta 55, 5677–5682 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Li, Y. & Cheng, Y. F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials. Appl. Surf. Sci. 396, 144–153 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    DorMohammadi, H., Pang, Q., Murkute, P., Árnadóttir, L. & Isgor, O. B. Investigation of iron passivity in highly alkaline media using reactive-force field molecular dynamics. Corros. Sci. 157, 31–40 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    DorMohammadi, H., Pang, Q., Murkute, P., Árnadóttir, L. & Isgor, O. B. Investigation of chloride-induced depassivation of iron in alkaline media by reactive force field molecular dynamics. npj Mater. Degrad. https://doi.org/10.1038/s41529-019-0081-6 (2019).

  • 8.

    Pang, Q., DorMohammadi, H., Isgor, O. B. & Árnadóttir, L. The effect of surface vacancies on the interactions of Cl with a α-Fe2O3 (0001) surface and the role of Cl in depassivation. Corros. Sci. 154, 61–69 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Pang, Q., DorMohammadi, H., Isgor, O. B. & Árnadóttir, L. The effect of surface defects on chloride-induced depassivation of iron – a density functional theory study. Corrosion 76, 690–697 (2020).

    Article 

    Google Scholar
     

  • 10.

    Macdonald, D. D. The point defect model for the passive state. J. Electrochem. Soc. 139, 3434–3449 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Nieuwoudt, M. K., Comins, J. D. & Cukrowski, I. Analysis of the composition of the passive film on iron under pitting conditions in 0.05 M NaOH/NaCl using Raman microscopy in situ with anodic polarisation and MCR-ALS. J. Raman Spectrosc. 43, 928–938 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Lin, L. F., Chao, C. Y. & Macdonald, D. D. A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J. Electrochem. Soc. 128, 1194–1198 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Chao, C. Y., Lin, L. F. & Macdonald, D. D. A point defect model for anodic passive films I. Film growth kinetics. J. Electrochem. Soc. 128, 1187–1194 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article 

    Google Scholar
     

  • 19.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article 

    Google Scholar
     

  • 20.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]-ERRATA. Phys. Rev. Lett. 78, 1396–1396 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • 23.

    Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article 

    Google Scholar
     

  • 25.

    Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Solovyev, I. V., Dederichs, P. H. & Anisimov, V. I. Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys. Rev. B 50, 16861–16871 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Pang, Q., DorMohammadi, H., Isgor, O. B. & Árnadóttir, L. Density functional theory study on the effect of OH and Cl adsorption on the surface structure of α-Fe2O3. Comput. Theor. Chem. 1100, 91–101 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 

    Google Scholar
     

  • 31.

    Pessoa, A. M., Fajín, J. L. C., Gomes, J. R. B. & Cordeiro, M. N. D. S. Ionic and radical adsorption on the Au(hkl) surfaces: A DFT study. Surf. Sci. 606, 69–77 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Zhang, R., Ling, L., Wang, B. & Huang, W. Solvent effects on adsorption of CO over CuCl(111) surface: a density functional theory study. Appl. Surf. Sci. 256, 6717–6722 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Zhang, R., Ling, L., Li, Z. & Wang, B. Solvent effects on Cu2O(111) surface properties and CO adsorption on Cu2O(111) surface: a DFT study. Appl. Catal. A Gen. 400, 142–147 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Finger, L. W. & Hazen, R. M. Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J. Appl. Phys. 51, 5362–5367 (1980).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *