To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators


  • 1.

    Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:fix006.


    Google Scholar
     

  • 2.

    Poindexter JS. Oligotrophy. In: Alexander M, editor. Advances in microbial ecology. Springer US, Boston, MA: Springer US; 1981. pp. 63–89.

  • 3.

    Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. Brock Biology of Microorganisms, 15th Global edition. Boston, US: Benjamin Cummins. 2018.

  • 4.

    Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev. 2010;34:476–95.

    PubMed 

    Google Scholar
     

  • 5.

    Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 2013;79:7116–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol. 2016;26:2862–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Setlow P, Wang S, Li Y-Q. Germination of spores of the orders Bacillales and Clostridiales. Annu Rev Microbiol. 2017;71:459–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Song S, Wood TK. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. bioRxiv. 2019. https://doi.org/10.1101/663658.

  • 9.

    Fenton AK, Kanna M, Woods R, Aizawa S, Sockett RE. Shadowing the actions of a predator: Backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol. 2010;192:6329–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Makowski Ł, Donczew R, Weigel C, Zawilak-Pawlik A, Zakrzewska-Czerwinska J. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus. Front Microbiol. 2016;7.

  • 11.

    Rotem O, Pasternak Z, Jurkevitch E. The genus Bdellovibrio and like organisms. The prokaryotes: deltaproteobacteria and epsilonproteobacteria. 2014. pp. 3–17.

  • 12.

    Lambert C, Evans KJ, Till R, Hobley L, Capeness M, Rendulic S, et al. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol. 2006;60:274–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Thomashow LS, Rittenberg SC. Waveform analysis and structure of flagella and basal complexes from Bdellovibrio bacteriovorus 109J. J Bacteriol. 1985;163:1038–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Hespell RB, Rosson RA, Thomashow MF, Rittenberg SC.  Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. J Bacteriol. 1973;113:1280–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Hespell RB, Thomashow MF, Rittenberg SC. Changes in cell composition and viability of Bdellovibrio bacteriovorus during starvation. Arch Microbiol. 1974;97:313–27.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Paix B, Ezzedine JA, Jacquet S. Diversity, dynamics, and distribution of Bdellovibrio and like organisms in perialpine lakes. Appl Environ Microbiol. 2019;85.

  • 17.

    Varon M, Fine M, Stein A. The maintenance of Bdellovibrio at low prey density. Microb Ecol. 1984;10:95–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Varon M, Zeigler BP. Bacterial predator-prey interaction at low prey density. Appl Environ Microbiol. 1978;36:11–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Chen H, Young S, Berhane TK, Williams HN. Predatory Bacteriovorax communities ordered by various prey species. PLoS ONE. 2012;7.

  • 20.

    Rogosky AM, Moak PL, Emmert EAB. Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol. 2006;52:81–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Jurkevitch E, Minz D, Ramati B, Barel G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol. 2000;66:2365–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol. 2014;89:149–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Pineiro SA, Williams HN, Stine OC, Piñeiro SA, Williams HN, Stine OC. Phylogenetic relationships amongst the saltwater members of the genus Bacteriovorax using rpoB sequences and reclassification of Bacteriovorax stolpii as Bacteriolyticum stolpii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2008;58:1203–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Chen H, Athar R, Zheng G, Williams HN. Prey bacteria shape the community structure of their predators. ISME J. 2011;5:1314–22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Shatzkes K, Connell ND, Kadouri DE. Predatory bacteria: a new therapeutic approach for a post-antibiotic era. Future Microbiol. 2017;12:469–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Guo Y, Yan L, Cai J. Effects of Bdellovibrio and like organisms on survival and growth performance of juvenile turbot, scophthalmus maximus. J World Aquac Soc. 2016;47:633–45.


    Google Scholar
     

  • 27.

    Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential control of potato soft rot disease by the obligate predators Bdellovibrio and like organisms. Appl Environ Microbiol. 2020;86.

  • 28.

    Sathyamoorthy R, Maoz A, Pasternak Z, Im H, Huppert A, Kadouri D, et al. Bacterial predation under changing viscosities. Environ Microbiol. 2019;21:2997–3010.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Hobley L, Fung RKY, Lambert C, Harris MATS, Dabhi JM, King SS, et al. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog. 2012;8.

  • 30.

    Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS ONE. 2013;8.

  • 31.

    Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 2006;22:3–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Ko J, Ryu K-S, Kim H, Shin J-S, Lee J-O, Cheong C, et al. Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by PilZ domain proteins. J Mol Biol. 2010;398:97–110.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Wirebrand L, Österberg S, López-Sánchez A, Govantes F, Shingler V. PP4397/FlgZ provides the link between PP2258 c-di-GMP signalling and altered motility in Pseudomonas putida. Sci Rep. 2018;8:1–10.

    CAS 

    Google Scholar
     

  • 34.

    Shanks RMQ, Davra VR, Romanowski EG, Brothers KM, Stella NA, Godboley D, et al. An eye to a kill: using predatory bacteria to control gram-negative pathogens associated with ocular infections. PLOS ONE. 2013;8:e66723.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R. Mutation detection with next-generation resequencing through a mediator genome. PLoS ONE. 2010;5.

  • 36.

    Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger MN, et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 2014;8:625–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. Survival guide: Escherichia coli in the stationary phase. Acta Nat. 2015;7:22–33.

    CAS 

    Google Scholar
     

  • 38.

    Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev. 2005;69:527–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5:1245–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Avidan O, Petrenko M, Becker R, Beck S, Linscheid M, Pietrokovski S, et al. Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Sci Rep. 2017;7:1–12.

  • 41.

    Barembruch C, Hengge R. Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol Microbiol. 2007;65:76–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303:689–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Nyström T. Stationary-phase physiology. Annu Rev Microbiol. 2004;58:161–81.

    PubMed 

    Google Scholar
     

  • 44.

    Browning AP, Sharp JA, Mapder T, Baker CM, Burrage K, Simpson MJ. Persistence is an optimal hedging strategy for bacteria in volatile environments. bioRxiv. 2019. https://doi.org/10.1101/2019.12.19.883645.

  • 45.

    Ratcliff WC, Denison RF. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr Biol. 2010;20:1740–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Zhang X-X, Rainey PB. Bet hedging in the underworld. Genome Biol. 2010;11:137.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Franklin RB, Mills AL. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol. 2003;44:335–46.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Manderscheid B, Matzner E. Spatial heterogeneity of soil solution chemistry in a mature Norway spruce (Picea abies (L.) Karst.) stand. Water Air Soil Pollut. 1995;85:1185–90.

    CAS 

    Google Scholar
     

  • 49.

    Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R. Sampling strategy in molecular microbial ecology: Influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol. 2003;5:1111–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 2017;15:271–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, et al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell. 2010;141:107–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a ‘Backstop Brake’ mechanism. Mol Cell. 2010;38:128–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Dattner I, Miller E, Petrenko M, Kadouri DE, Jurkevitch E, Huppert A. Modelling and parameter inference of predator–prey dynamics in heterogeneous environments using the direct integral approach. J R Soc Interface. 2017;14:20160525.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Hol FJH, Rotem O, Jurkevitch E, Dekker C, Koster DA. Bacterial predator–prey dynamics in microscale patchy landscapes. Proc R Soc B Biol Sci. 2016;283:20152154.


    Google Scholar
     

  • 55.

    Gabel CV, Berg HC. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc Natl Acad Sci USA. 2003;100:8748–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Gadkari D, Stolp H. Energy metabolism of Bdellovibrio bacteriovorus. I. Energy production, ATP pool, energy charge. Arch Microbiol. 1975;102:179–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Shioi JI, Galloway RJ, Niwano M, Chinnock RE, Taylor BL. Requirement of ATP in bacterial chemotaxis. J Biol Chem. 1982;257:7969–75.

  • 58.

    Fang X, Gomelsky M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol. 2010;76:1295–305.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Varon M. Interaction of Bdellovibrio with its prey in mixed microbial populations. Microb Ecol. 1981;7:97–105.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Kessel M, Shilo M. Relationship of Bdellovibrio elongation and fission to host cell size. J Bacteriol. 1976;128:477–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    LaMarre AG, Straley SC, Conti SF. Chemotaxis toward amino acids by Bdellovibrio bacteriovorus. J Bacteriol. 1977;131:201–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Chauhan A, Williams HN. Response of Bdellovibrio and like organisms (BALOs) to the migration of naturally occurring bacteria to chemoattractants. Curr Microbiol. 2006;53:516–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Feng S, Tan CH, Constancias F, Kohli GS, Cohen Y, Rice SA. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol Ecol. 2017;93.

  • 64.

    Kadouri DE, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol. 2005;71:4044–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Szabó E, Liébana R, Hermansson M, Modin O, Persson F, Wilén B-MB-MB-M, et al. Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors. AMB Express. 2017;7:168.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Lambert C, Smith MCM, Sockett RE. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol. 2003;5:127–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Petrenko M, Friedman SP, Fluss R, Pasternak Z, Huppert A, Jurkevitch E. Spatial heterogeneity stabilizes predator–prey interactions at the microscale while patch connectivity controls their outcome. Environ Microbiol. 2019;22:694–704.

  • 68.

    Mukherjee S, Brothers KM, Shanks RMQQ, Kadouri DE. Visualizing Bdellovibrio bacteriovorus by using the tdTomato fluorescent protein. Appl Environ Microbiol. 2015;82:1653–61.

    PubMed 

    Google Scholar
     

  • 69.

    Jurkevitch E. Isolation and classification of Bdellovibrio and like organisms. Curr Protoc Microbiol. 2012;Chapter 7:Unit 7B.1.


    Google Scholar
     

  • 70.

    Peters JM, Koo B-M, Patino R, Heussler GE, Hearne CC, Qu J, et al. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nat Microbiol. 2019;4:244–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Copeland MF, Weibel DB. Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter. 2009;5:1174–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Rotem O, Pasternak Z, Shimoni E, Belausov E, Porat Z, Pietrokovski S, et al. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci. 2015;112:E6028–37.

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *