CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    ADS 

    Google Scholar
     

  • 2.

    Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    ADS 

    Google Scholar
     

  • 3.

    Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).

    ADS 

    Google Scholar
     

  • 4.

    Holsteen, A., Kim, I. S. & Lauhon, L. J. Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition. Nano Lett. 14, 1898–1902 (2014).

    ADS 

    Google Scholar
     

  • 5.

    Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    ADS 

    Google Scholar
     

  • 6.

    Manca, N. et al. Selective high-frequency mechanical actuation driven by the VO2 electronic instability. Adv. Mater. 29, 1701618 (2017).


    Google Scholar
     

  • 7.

    Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).


    Google Scholar
     

  • 8.

    Bhaskar, U. K. et al. A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11, 263 (2016).

    ADS 

    Google Scholar
     

  • 9.

    Paskiewicz, D. M., Sichel-Tissot, R., Karapetrova, E., Stan, L. & Fong, D. D. Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 16, 534–542 (2015).

    ADS 

    Google Scholar
     

  • 10.

    Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    ADS 

    Google Scholar
     

  • 11.

    Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87 (2019).

    ADS 

    Google Scholar
     

  • 12.

    Novoselov, K., Mishchenko, A., Carvalho, A. & Neto, A. C. 2D materials and van der waals heterostructures. Science 353, aac9439 (2016).


    Google Scholar
     

  • 13.

    Atalaya, J., Kinaret, J. M. & Isacsson, A. Nanomechanical mass measurement using nonlinear response of a graphene membrane. EPL 91, 48001 (2010).

    ADS 

    Google Scholar
     

  • 14.

    Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    ADS 

    Google Scholar
     

  • 15.

    Smith, A. D. et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13, 3237–3242 (2013).

    ADS 

    Google Scholar
     

  • 16.

    Dolleman, R. J., Davidovikj, D., Cartamil-Bueno, S. J., van der Zant, H. S. J. & Steeneken, P. G. Graphene squeeze-film pressure sensors. Nano Lett. 16, 568–571 (2016).

    ADS 

    Google Scholar
     

  • 17.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    ADS 

    Google Scholar
     

  • 18.

    Dolleman, R. J. et al. Optomechanics for thermal characterization of suspended graphene. Phys. Rev. B 96, 165421 (2017).

    ADS 

    Google Scholar
     

  • 19.

    Davidovikj, D. et al. Nonlinear dynamic characterization of two-dimensional materials. Nat. Commun. 8, 1253 (2017).

    ADS 

    Google Scholar
     

  • 20.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).


    Google Scholar
     

  • 21.

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    ADS 

    Google Scholar
     

  • 22.

    Castellanos-Gomez, A. et al. Single-layer MoS2 mechanical resonators. Adv. Mater. 25, 6719–6723 (2013).


    Google Scholar
     

  • 23.

    Cardona, M. Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 140, A651–A655 (1965).

    ADS 

    Google Scholar
     

  • 24.

    Tang, Y., Zhu, Y., Liu, Y., Wang, Y. & Ma, X. Giant linear strain gradient with extremely low elastic energy in a perovskite nanostructure array. Nat. Commun. 8, 1–8 (2017).


    Google Scholar
     

  • 25.

    Cartamil-Bueno, S. J. et al. High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2. Nano Res. 8, 2842–2849 (2015)

  • 26.

    Landau, L. D., Pitaevskii, L. P. & Lifshitz, E. M. Electrodynamics of Continuous Media. (Butterworth-Heinemann, Oxford, 1984).


    Google Scholar
     

  • 27.

    Šiškins, M. et al. Magnetic and electronic phase transitions probed by nanomechanical resonators. Nat. Commun. 11, 1–7 (2020).


    Google Scholar
     

  • 28.

    Sanditov, D. & Belomestnykh, V. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Tech. Phys. Lett. 56, 1619–1623 (2011).


    Google Scholar
     

  • 29.

    Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).

    ADS 

    Google Scholar
     

  • 30.

    Singh, V. et al. Probing thermal expansion of graphene and modal dispersion at low-temperature usinggraphene nanoelectromechanical systems resonators. Nanotechnology 21, 165204 (2010).

    ADS 

    Google Scholar
     

  • 31.

    Morell, N. et al. High quality factor mechanical resonators based on WSe2 monolayers. Nano Lett. 16, 5102–5108 (2016).

    ADS 

    Google Scholar
     

  • 32.

    Scott, J. & Ledbetter, H. Interpretation of elastic anomalies in SrTiO3 at 37 K. Z. Phys. B Condens. Matter 104, 635–639 (1997).

    ADS 

    Google Scholar
     

  • 33.

    Kityk, A. et al. Nonlinear elastic behaviour of SrTiO3 crystals in the quantum paraelectric regime. EPL 50, 41 (2000).

    ADS 

    Google Scholar
     

  • 34.

    Zalar, B. et al. NMR study of disorder in BaTiO3 and SrTiO3. Phys. Rev. B 71, 064107 (2005).

    ADS 

    Google Scholar
     

  • 35.

    Scott, J. F., Salje, E. K. H. & Carpenter, M. A. Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls. Phys. Rev. Lett. 109, 187601 (2012).

    ADS 

    Google Scholar
     

  • 36.

    Salje, E. K. H., Aktas, O., Carpenter, M. A., Laguta, V. V. & Scott, J. F. Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3. Phys. Rev. Lett. 111, 247603 (2013).

    ADS 

    Google Scholar
     

  • 37.

    Ledbetter, H., Lei, M. & Kim, S. Elastic constants, debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides. Phase Transit. 23, 61–70 (1990).


    Google Scholar
     

  • 38.

    Ang, C., Scott, J. F., Yu, Z., Ledbetter, H. & Baptista, J. L. Dielectric and ultrasonic anomalies at 16, 37, and 65 K in SrTiO3. Phys. Rev. B 59, 6661–6664 (1999).

    ADS 

    Google Scholar
     

  • 39.

    Tsunekawa, S., Watanabe, H. & Takei, H. Linear thermal expansion of SrTiO3. Phys. Status Solidi A 83, 467–472 (1984).

    ADS 

    Google Scholar
     

  • 40.

    Lytle, F. W. X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys. 35, 2212–2215 (1964).

    ADS 

    Google Scholar
     

  • 41.

    Unoki, H. & Sakudo, T. Electron spin resonance of Fe3+ in SrTiO3 with special reference to the 110 K phase transition. J. Phys. Soc. 23, 546–552 (1967).

    ADS 

    Google Scholar
     

  • 42.

    Garnier, P. Specific heat of srtio3 near the structural transition. Phys. Lett. A 35, 413–414 (1971).

    ADS 

    Google Scholar
     

  • 43.

    Will, M. et al. High quality factor graphene-based two-dimensional heterostructure mechanical resonator. Nano Lett. 17, 5950–5955 (2017).

    ADS 

    Google Scholar
     

  • 44.

    Kim, B. et al. Temperature dependence of quality factor in MEMS resonators. J. Microelectromech. Syst. 17, 755–766 (2008).


    Google Scholar
     

  • 45.

    Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, 124304 (2006).

    ADS 

    Google Scholar
     

  • 46.

    Unterreithmeier, Q. P., Faust, T. & Kotthaus, J. P. Damping of nanomechanical resonators. Phys. Rev. Lett. 105, 027205 (2010).

    ADS 

    Google Scholar
     

  • 47.

    Norte, R. A., Moura, J. P. & Gröblacher, S. Mechanical resonators for quantum optomechanics experiments at room temperature. Phys. Rev. Lett. 116, 147202 (2016).

    ADS 

    Google Scholar
     

  • 48.

    Zener, C. Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230 (1937).

    ADS 
    MATH 

    Google Scholar
     

  • 49.

    Garai, J. Correlation between thermal expansion and heat capacity. Calphad 30, 354–356 (2006).


    Google Scholar
     

  • 50.

    Durán, A., Morales, F., Fuentes, L. & Siqueiros, J. Specific heat anomalies at 37, 105 and 455 K in SrTiO3 :Pr. J. Condens. Matter Phys. 20, 085219 (2008).

    ADS 

    Google Scholar
     

  • 51.

    Arzel, L. et al. Observation of a sample-dependent 37 K anomaly on the lattice parameters of strontium titanate. EPL 61, 653 (2003).

    ADS 

    Google Scholar
     

  • 52.

    Wang, Z. et al. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale 7, 877–884 (2015).

    ADS 

    Google Scholar
     

  • 53.

    Cartamil-Bueno, S. J. et al. Mechanical characterization and cleaning of CVD single-layer h-BN resonators. npj 2D Mater. Appl. 1, 16 (2017).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *