Underground test of gravity-related wave function collapse


  • 1.

    Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828 (1935).

    ADS 
    MATH 

    Google Scholar
     

  • 2.

    Leggett, A. J. Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 3.

    Weinberg, S. Precision tests of quantum mechanics. Phys. Rev. Lett. 62, 485–488 (1989).

    ADS 

    Google Scholar
     

  • 4.

    Bell, J. S. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge Univ. Press, 2004).

  • 5.

    Ghirardi, G. C., Rimini, A. & Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 6.

    Adler, S. L. Quantum Theory as an Emergent Phenomenon: the Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory (Cambridge Univ. Press, 2004).

  • 7.

    Weinberg, S. Collapse of the state vector. Phys. Rev. A 85, 062116 (2012).

    ADS 

    Google Scholar
     

  • 8.

    Ghirardi, G. C., Pearle, P. & Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 9.

    Bassi, A. & Ghirardi, G. Dynamical reduction models. Phys. Rep. 379, 257–426 (2003).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 10.

    Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).

    ADS 

    Google Scholar
     

  • 11.

    Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271–277 (2014).


    Google Scholar
     

  • 12.

    Feynman, R. Feynman Lectures on Gravitation (CRC Press, 2018).

  • 13.

    Penrose, R. & Mermin, N. D. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford Univ. Press, 1990).

  • 14.

    Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 15.

    Penrose, R. On the gravitization of quantum mechanics 1: Quantum state reduction. Found. Phys. 44, 557–575 (2014).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 16.

    Howl, R., Penrose, R. & Fuentes, I. Exploring the unification of quantum theory and general relativity with a Bose–Einstein condensate. New J. Phys. 21, 043047 (2019).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 17.

    Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377–381 (1987).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 18.

    Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989).

    ADS 

    Google Scholar
     

  • 19.

    Ghirardi, G., Grassi, R. & Rimini, A. Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057–1064 (1990).

    ADS 

    Google Scholar
     

  • 20.

    Diósi, L. Gravity-related wave function collapse: mass density resolution. J. Phys. Conf. Ser. 442, 012001 (2013).

  • 21.

    Diósi, L. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199–202 (1984).


    Google Scholar
     

  • 22.

    Bahrami, M., Großardt, A., Donadi, S. & Bassi, A. The Schrödinger–Newton equation and its foundations. New J. Phys. 16, 115007 (2014).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 23.

    Salart, D., Baas, A., van Houwelingen, J. A., Gisin, N. & Zbinden, H. Spacelike separation in a Bell test assuming gravitationally induced collapses. Phys. Rev. Lett. 100, 220404 (2008).

    ADS 

    Google Scholar
     

  • 24.

    Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 25.

    Kovachy, T. et al. Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015).

    ADS 

    Google Scholar
     

  • 26.

    Fein, Y. Y. et al. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 15, 1242–1245 (2019).


    Google Scholar
     

  • 27.

    Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS 

    Google Scholar
     

  • 28.

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    ADS 

    Google Scholar
     

  • 29.

    Teufel, J. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    ADS 

    Google Scholar
     

  • 30.

    Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 31.

    Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

    ADS 

    Google Scholar
     

  • 32.

    Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 33.

    Vovrosh, J. et al. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. J. Opt. Soc. Am. B 34, 1421–1428 (2017).

    ADS 

    Google Scholar
     

  • 34.

    Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    ADS 

    Google Scholar
     

  • 35.

    Bahrami, M., Smirne, A. & Bassi, A. Role of gravity in the collapse of a wave function: a probe into the Diósi–Penrose model. Phys. Rev. A 90, 062105 (2014).

    ADS 

    Google Scholar
     

  • 36.

    Helou, B., Slagmolen, B., McClelland, D. E. & Chen, Y. LISA Pathfinder appreciably constrains collapse models. Phys. Rev. D 95, 084054 (2017).

    ADS 

    Google Scholar
     

  • 37.

    Diósi, L. & Lukács, B. Calculation of X-ray signals from Károlyházy hazy space-time. Phys. Lett. A 181, 366–368 (1993).

    ADS 

    Google Scholar
     

  • 38.

    Neder, H., Heusser, G. & Laubenstein, M. Low level γ-ray germanium-spectrometer to measure very low primordial radionuclide concentrations. Appl. Radiat. Isot. 53, 191–195 (2000).


    Google Scholar
     

  • 39.

    Heusser, G., Laubenstein, M. & Neder, H. Low-level germanium gamma-ray spectrometry at the μBq/kg level and future developments towards higher sensitivity. Radioact. Environ. 8, 495–510 (2006).


    Google Scholar
     

  • 40.

    Fu, Q. Spontaneous radiation of free electrons in a nonrelativistic collapse model. Phys. Rev. A 56, 1806–1811 (1997).

    ADS 

    Google Scholar
     

  • 41.

    Piscicchia, K. et al. CSL collapse model mapped with the spontaneous radiation. Entropy 19, 319 (2017).

    ADS 

    Google Scholar
     

  • 42.

    Tilloy, A. & Stace, T. M. Neutron star heating constraints on wave-function collapse models. Phys. Rev. Lett. 123, 080402 (2019).

    ADS 

    Google Scholar
     

  • 43.

    Debye, P. Interferenz von Röntgenstrahlen und Wärmebewegung. Ann. Phys. 348, 49–92 (1913).


    Google Scholar
     

  • 44.

    Waller, I. Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen. Z. Phys. 17, 398–408 (1923).

    ADS 

    Google Scholar
     

  • 45.

    Gao, H. & Peng, L.-M. Parameterization of the temperature dependence of the Debye–Waller factors. Acta Crystallogr. A 55, 926–932 (1999).


    Google Scholar
     

  • 46.

    Adler, S. L. & Bassi, A. Collapse models with non-white noises. J. Phys. A 40, 15083 (2007).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 47.

    Adler, S. L. & Bassi, A. Collapse models with non-white noises: II. Particle-density coupled noises. J. Phys. A 41, 395308 (2008).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 48.

    Gasbarri, G., Toroš, M., Donadi, S. & Bassi, A. Gravity induced wave function collapse. Phys. Rev. D 96, 104013 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 49.

    Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  • 50.

    Adler, S. L. & Ramazanoglu, F. M. Photon-emission rate from atomic systems in the CSL model. J. Phys. A 40, 13395 (2007).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 51.

    Adler, S. L., Bassi, A. & Donadi, S. On spontaneous photon emission in collapse models. J. Phys. A 46, 245304 (2013).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 52.

    Bassi, A. & Donadi, S. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: a case study. Phys. Lett. A 378, 761–765 (2014).

    ADS 
    MATH 

    Google Scholar
     

  • 53.

    Donadi, S., Deckert, D.-A. & Bassi, A. On the spontaneous emission of electromagnetic radiation in the CSL model. Ann. Phys. 340, 70–86 (2014).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 54.

    Boswell, M. et al. Mage—a Geant4-based Monte Carlo application framework for low-background germanium experiments. IEEE Trans. Nucl. Sci. 58, 1212–1220 (2011).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *