Urinary ferritin; a potential noninvasive way to screen NICU patients for iron deficiency


  • 1.

    Cusick SE, Georgieff MK, Rao R. Approaches for reducing the risk of early-life iron deficiency-induced brain dysfunction in children. Nutrients. 2018;10:227.

    Article 

    Google Scholar
     

  • 2.

    Georgieff MK. Iron assessment to protect the developing brain. Am J Clin Nutr. 2017;106:1588S–93S.

    Article 

    Google Scholar
     

  • 3.

    Fleming RE. Cord serum ferritin levels, fetal iron status, and neurodevelopmental outcomes: Correlations and confounding variables. J Pediatr. 2002;140:145–8.

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Tamura T, Goldenberg RL, Hou J, Johnston KE, Cliver SP, Ramey SL, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140:165–70.

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Marell PS, Blohowiak SE, Evans MD, Georgieff MK, Kling PJ, Tran PV. Cord blood-derived exosomal CNTN2 and BDNF: potential molecular markers for brain health of neonates at risk for iron deficiency. Nutrients. 2019;11:2478.

    CAS 
    Article 

    Google Scholar
     

  • 6.

    McCarthy PJ, Zundel HR, Johnson KR, Blohowiak SE, Kling PJ. Impact of growth restriction and other prenatal risk factors on cord blood iron status in prematurity. J Pediatr Hematol Oncol. 2016;38:210–5.

    Article 

    Google Scholar
     

  • 7.

    MacQueen BC, Christensen RD, Ward DM, Bennett ST, O’Brien EA, Sheffield MJ, et al. The iron status at birth of neonates with risk factors for developing iron deficiency: a pilot study. J Perinatol. 2017;37:436–40.

    CAS 
    Article 

    Google Scholar
     

  • 8.

    MacQueen BC, Christensen RD, Baer VL, Ward DM, Snow GL. Screening umbilical cord blood for congenital iron deficiency. Blood Cells Mol Dis. 2019;77:95–100.

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Dosch NC, Guslits EF, Weber MB, Murray SE, Ha B, Coe CL, et al. Maternal obesity affects inflammatory and iron indices in umbilical cord blood. J Pediatr. 2016;172:20–28.

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010;1800:760–9.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    DeLoughery TG. Iron deficiency anemia. Med Clin North Am. 2017;101:319–32.

    Article 

    Google Scholar
     

  • 12.

    Siddappa AM, Rao R, Long JD, Widness JA, Georgieff MK. The assessment of newborn iron stores at birth: a review of the literature and standards for ferritin concentrations. Neonatology. 2007;92:73–82.

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387:907–16.

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ishikawa K, Narita O, Saito H, Kato K. Determination of ferritin in urine and in serum of normal adults with a sensitive enzyme immunoassay. Clin Chim Acta. 1982;123:73–81.

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Bahr TM, Christensen RD, Ward DM, Meng F, Jackson LK, Doyle K, et al. Ferritin in serum and urine: a pilot study. Blood Cells Mol Dis. 2019;76:59–62.

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Brugnara C, Schiller B, Moran J. Reticulocyte hemoglobin equivalent (Ret He) and assessment of iron-deficient states. Clin Lab Haematol. 2006;28:303–8.

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Buttarello M, Rauli A, Mezzapelle G. Reticulocyte count and extended reticulocyte parameters by Mindray BC-6800: reference intervals and comparison with Sysmex XE-5000. Int J Lab Hematol. 2017;39:596–603.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Christensen RD, Henry E, Bennett ST, Yaish HM. Reference intervals for reticulocyte parameters of infants during their first 90 days after birth. J Perinatol. 2016;36:61–6.

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Lorenz L, Peter A, Arand J, Springer F, Poets CF, Franz AR. Reticulocyte haemoglobin content declines more markedly in preterm than in term infants in the first days after birth. Neonatology. 2017;112:246–50.

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Al-Ghananim RT, Nalbant D, Schmidt RL, Cress GA, Zimmerman MB, Widness JA. Reticulocyte hemoglobin content during the first month of life in critically ill very low birth weight neonates differs from term infants, children, and adults. J Clin Lab Anal. 2016;30:326–34.

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Lorenz L, Arand J, Büchner K, Wacker-Gussmann A, Peter A, Poets CF, et al. Reticulocyte haemoglobin content as a marker of iron deficiency. Arch Dis Child Fetal Neonatal Ed. 2015;100:F198–202.

    Article 

    Google Scholar
     

  • 22.

    Amin K, Bansal M, Varley N, Wang H, Amin S. Reticulocyte hemoglobin content as a function of iron stores at 35–36 weeks post menstrual age in very premature infants. J Matern Fetal Neonatal Med. 2019;32:1–6.

    Article 

    Google Scholar
     

  • 23.

    Buttarello M, Pajola R, Novello E, Mezzapelle G, Plebani M. Evaluation of the hypochromic erythrocyte and reticulocyte hemoglobin content provided by the Sysmex XE-5000 analyzer in diagnosis of iron deficiency erythropoiesis. Clin Chem Lab Med. 2016;54:1939–45.

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Löfving A, Domellöf M, Hellström-Westas L, Andersson O. Reference intervals for reticulocyte hemoglobin content in healthy infants. Pediatr Res. 2018;84:657–61.

    Article 

    Google Scholar
     

  • 25.

    Lorenz L, Peter A, Arand J, Springer F, Poets CF, Franz AR. Reference ranges of reticulocyte haemoglobin content in preterm and term infants: a retrospective analysis. Neonatology. 2017;111:189–94.

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Christensen RD, Jopling J, Henry E, Wiedmeier SE. The erythrocyte indices of neonates, defined using data from over 12,000 patients in a multihospital health care system. J Perinatol. 2008;28:24–28.

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Urrechaga E, Borque L, Escanero JF. Potential utility of the new Sysmex XE 5000 red blood cell extended parameters in the study of disorders of iron metabolism. Clin Chem Lab Med. 2009;47:1411–6.

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Urrechaga E, Borque L, Escanero JF. Percentage of hypochromic erythrocytes as a potential marker of iron availability. Clin Chem Lab Med. 2011;50:685–7.

    PubMed 

    Google Scholar
     

  • 29.

    Levy S, Schapkaitz E. The clinical utility of new reticulocyte and erythrocyte parameters on the Sysmex XN 9000 for iron deficiency in pregnant patients. Int J Lab Hematol. 2018;40:683–90.

  • 30.

    German K, Vu PT, Grelli KN, Denton C, Lee G, Juul SE. Zinc protoporphyrin-to-heme ratio and ferritin as measures of iron sufficiency in the Neonatal Intensive Care Unit. J Pediatr. 2018;194:47–53.

    CAS 
    Article 

    Google Scholar
     

  • 31.

    German K, Vu PT, Irvine JD, Juul SE. Trends in reticulocyte hemoglobin equivalent values in critically ill neonates, stratified by gestational age. J Perinatol. 2019;39:1268–74.

    CAS 
    Article 

    Google Scholar
     

  • 32.

    McLimore HM, Phillips AK, Blohowiak SE, Pham DQ, Coe CL, Fischer BA, et al. Impact of multiple prenatal risk factors on newborn iron status at delivery. J Pediatr Hematol Oncol. 2013;35:473–477.

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Phillips AK, Roy SC, Lundberg R, Guilbert TW, Auger AP, Blohowiak SE, et al. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J Perinatol. 2014;34:513–518.

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Siddappa AM, Olson RM, Spector M, Northrop E, Zamora T, Brearley AM, et al. High prevalence of iron deficiency despite standardized high-dose iron supplementation during recombinant erythropoietin therapy in extremely low gestational age newborns. J Pediatr 2020;S0022-3476:30434–0.


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *