Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks


  • 1.

    Environment Agency. Environment Agency calls for action on water efficiency – GOV.UK. https://www.gov.uk/government/news/environment-agency-calls-for-action-on-water-efficiency (2018).

  • 2.

    Farewell, T. S., Jude, S. & Pritchard, O. G. How the impacts of burst water mains are influenced by soil sand content. Nat. Hazards Earth Syst. Sci. 18, 2951–2968 (2018).

    Article 

    Google Scholar
     

  • 3.

    Pritchard, O. G., Hallett, S. H. & Farewell, T. S. Soil impacts on UK infrastructure: current and future climate. Proc. Inst. Civ. Eng. – Eng. Sustain. 167, 170–184 (2014).


    Google Scholar
     

  • 4.

    Scheidegger, A., Leitão, J. P. & Scholten, L. Statistical failure models for water distribution pipes – A review from a unified perspective. Water Res. 83, 237–247 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Pelletier, G., Mailhot, A. & Villeneuve, J. P. Modeling Water Pipe Breaks—Three Case Studies. J. Water Resour. Plan. Manag. 129, 115–123 (2003).

    Article 

    Google Scholar
     

  • 6.

    Wols, B. A. & van Thienen, P. Impact of weather conditions on pipe failure: a statistical analysis. J. Water Supply Res. Technol. 63, 212–223 (2014).

    Article 

    Google Scholar
     

  • 7.

    Gould, S. J. F., Boulaire, F. A., Burn, S., Zhao, X. L. & Kodikara, J. K. Seasonal factors influencing the failure of buried water reticulation pipes. Water Sci. Technol. 63, 2692–2699 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Wols, B. A., Vogelaar, A., Moerman, A. & Raterman, B. Effects of weather conditions on drinking water distribution pipe failures in the Netherlands. Water Sci. Technol. Water Supply 19, 404–416 (2019).

    Article 

    Google Scholar
     

  • 9.

    Fuchs-Hanusch, D., Friedl, F., Scheucher, R., Kogseder, B. & Muschalla, D. Effect of seasonal climatic variance on water main failure frequencies in moderate climate regions. Water Sci. Technol. Water Supply 13, 435–446 (2013).

    Article 

    Google Scholar
     

  • 10.

    Kakoudakis, K., Behzadian, K., Farmani, R. & Butler, D. Pipeline failure prediction in water distribution networks using evolutionary polynomial regression combined with K-means clustering. Urban Water J. 14, 737–742 (2017).

    Article 

    Google Scholar
     

  • 11.

    Barton, N. A., Farewell, T. S., Hallett, S. H. & Acland, T. F. Improving pipe failure predictions: factors affecting pipe failure in drinking water networks. Water Res. 164, 114926 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Bruaset, S. & Sægrov, S. An analysis of the potential impact of climate change on the structural reliability of drinking water pipes in cold climate regions. Water 10, 411 (2018).

  • 13.

    Rajani, B., Kleiner, Y. & Sink, J.-E. Exploration of the relationship between water main breaks and temperature covariates. Urban Water J. 9, 67–84 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Farewell, T. S., Hallett, S. H. & Truckell, I. G. Soil and climatic causes of water mains infrastructure bursts. Natl. Soils Res. Ins. (2012).

  • 15.

    Heinze, G., Wallisch, C. & Dunkler, D. Variable selection – A review and recommendations for the practicing statistician. Biometrical J. 60, 431–449 (2018).

    Article 

    Google Scholar
     

  • 16.

    Ratner, B. Variable selection methods in regression: ignorable problem, outing notable solution. J. Targeting, Meas. Anal. Mark. 18, 65–75 (2010).

    Article 

    Google Scholar
     

  • 17.

    Marra, G. & Wood, S. N. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55, 2372–2387 (2011).

    Article 

    Google Scholar
     

  • 18.

    Fasiolo, M., Nedellec, R., Goude, Y. & Wood, S. N. Scalable visualization methods for modern generalized additive models. J. Comput. Graph. Stat. 29, 78–86 (2019).

  • 19.

    Kakoudakis, K., Farmani, R. & Butler, D. Pipeline failure prediction in water distribution networks using weather conditions as explanatory factors. J. Hydroinformatics 20, 1191–1200 (2018).

    Article 

    Google Scholar
     

  • 20.

    Becker, B. R., Misra, A. & Fricke, B. A. Development of correlations for soil thermal conductivity. Int. Commun. Heat Mass Transf. 19, 59–68 (1992).

    Article 

    Google Scholar
     

  • 21.

    Trickey, S. A., Moore, I. D. & Balkaya, M. Parametric study of frost-induced bending moments in buried cast iron water pipes. Tunn. Undergr. Sp. Technol. 51, 291–300 (2016).

    Article 

    Google Scholar
     

  • 22.

    Farewell, T. S., Hallett, S. H., Hannam, J. A. & Jones, R. J. A. Soil impacts on national infrastructure in the UK. Infrastructure Transitions Res. Consort. 1–45 (2012).

  • 23.

    Pritchard, O., Farwell, T. & Hallett, S. Soil-related geohazard assessment for climate-resilient UK infrastructure. Cranf. Univ. 1–400 (2015).

  • 24.

    Pritchard, O. G., Hallett, S. H. & Farewell, T. S. Probabilistic soil moisture projections to assess Great Britain’s future clay-related subsidence hazard. Clim. Change 133, 635–650 (2015).

    Article 

    Google Scholar
     

  • 25.

    Wols, B. A. & van Thienen, P. Modelling the effect of climate change induced soil settling on drinking water distribution pipes. Comput. Geotech. 55, 240–247 (2014).

    Article 

    Google Scholar
     

  • 26.

    Arsénio, A. M., Pieterse, I., Vreeburg, J., De Bont, R. & Rietveld, L. Failure mechanisms and condition assessment of PVC push-fit joints in drinking water networks. J. Water Supply Res. Technol. – AQUA 62, 78–85 (2013).

    Article 

    Google Scholar
     

  • 27.

    Sundberg, C. Fundementals of Differential Settlement of Pipelines. In Sessions of the Pipelines Conference, Phoenix, AZ, AUG 0609, 2017 (eds Pridmore, A. B. & Geisbush, J.) 469–481 (Pipelines 2017. Planning and design: proceedings of sessions of the Pipelines 2017 Conference, August 6–9, 2017, Phoenix, Arizona, 2017).

  • 28.

    Pritchard, O., Hallett, S. H. & Farewell, T. S. Soil Corrosivity in the UK – Impacts on Critical Infrastructure. Ifrastructure Transitions Res. Consort. 1–55 (2013).

  • 29.

    Ruchti, G. F. Water Pipeline Condition Assessment (American Society of Civil Engineers (ASCE), 2017).

  • 30.

    Hallett, S. H., Sakrabani, R., Keay, C. A. & Hannam, J. A. Developments in land information systems: examples demonstrating land resource management capabilities and options. Soil Use Manag. 33, 514–529 (2017).

    Article 

    Google Scholar
     

  • 31.

    Boorman, D. B., Hollis, J. M. & Lilly, A. Hydrology of soil Types: A Hydrologically Based Classification of the Soils of United Kingdom. (Institute of Hydrology, 1995).

  • 32.

    Met Office. East_Anglia Days of Air Frost. https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/AirFrost/ranked/East_Anglia.txt (2019).

  • 33.

    ESRI. ArcGIS Online | Interactive Maps Connecting People, Locations & Data. https://www.arcgis.com/index.html (2019).

  • 34.

    R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (2018).

  • 35.

    Hough, M. N. & Jones, R. J. A. The United Kingdom Meteorological Office rainfall and evaporation calculation system: MORECS version 2.0-an overview. Hydrol. Earth Syst. Sci. 1, 227–239 (1997).

    Article 

    Google Scholar
     

  • 36.

    Zhou, Y. Deterioration and Optimal Rehabilitation Modelling for Urban Water Distribution Systems. Delft University of Technology. 1–249 (2018).

  • 37.

    Rajani, B. B. & Kleiner, Y. Using limited data to assess future needs. Am. Water Work. Assoc. 91, 47–61 (1999).

    Article 

    Google Scholar
     

  • 38.

    Wiley, M. & Wiley, J. F. GAMs. In Advanced R Statistical Programming and Data Models 165–224 (Apress, 2019).

  • 39.

    Buja, A., Hastie, T. & Tibshirani, R. Linear smoothers and additive models. Ann. Stat. 17, 453–510 (1989).

    Article 

    Google Scholar
     

  • 40.

    Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–310 (1986).

    Article 

    Google Scholar
     

  • 41.

    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Modell. 157, 157–177 (2002).

    Article 

    Google Scholar
     

  • 42.

    Wood, S. N. Generalized Additive Models: An Introduction with R. (Chapman and Hall/CRC, 2006).

  • 43.

    Wood, S. N., Goude, Y. & Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. Ser. C Appl. Stat. 64, 139–155 (2015).

    Article 

    Google Scholar
     

  • 44.

    He, S. Generalized Additive Models for Data With Concurvity: Statistical Issues and a Novel Model Fitting Approach. University of Pittsburgh. 1–51 (2004).

  • 45.

    Goldstein, A., Kapelner, A., Bleich, J. & Pitkin, E. Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graph. Stat. 24, 44–65 (2015).

    Article 

    Google Scholar
     



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *