Hydraulic engineering as a sub-discipline of civil engineering is concerned with the flow and conveyance of fluids, principally water and sewage. One feature of these systems is the extensive use of gravity as the motive force to cause the movement of the fluids. This area of civil engineering is intimately related to the design of bridges, dams, channels, canals, and levees, and to both sanitary and environmental engineering.

Hydraulic engineering is the application of the principles of fluid mechanics to problems dealing with the collection, storage, control, transport, regulation, measurement, and use of water. Before beginning a hydraulic engineering project, one must figure out how much water is involved. The hydraulic engineer is concerned with the transport of sediment by the river, the interaction of the water with its alluvial boundary, and the occurrence of scour and deposition. “The hydraulic engineer actually develops conceptual designs for the various features which interact with water such as spillways and outlet works for dams, culverts for highways, canals and related structures for irrigation projects, and cooling-water facilities for thermal power plants.

Applications

Common topics of design for hydraulic engineers include hydraulic structures such as dams, levees, water distribution networks, water collection networks, sewage collection networks, storm water management, sediment transport, and various other topics related to transportation engineering and geotechnical engineering. Equations developed from the principles of fluid dynamics and fluid mechanicsare widely utilized by other engineering disciplines such as mechanical, aeronautical and even traffic engineers.

Related branches include hydrology and rheology while related applications include hydraulic modeling, flood mapping, catchment flood management plans, shoreline management plans, estuarine strategies, coastal protection, and flood alleviation.

History

Earliest uses of hydraulic engineering were to irrigate crops and dates back to the Middle East and Africa. Controlling the movement and supply of water for growing food has been used for many thousands of years. One of the earliest hydraulic machines, the water clock was used in the early 2nd millennium BC. Other early examples of using gravity to move water include the Qanat system in ancient Persia and the very similar Turpan water system in ancient China as well as irrigation canals in Peru.

In ancient China, hydraulic engineering was highly developed, and engineers constructed massive canals with levees and dams to channel the flow of water for irrigation, as well as locks to allow ships to pass through. Sunshu Ao is considered the first Chinese hydraulic engineer. Another important Hydraulic Engineer in China, Ximen Bao was credited of starting the practice of large scale canal irrigation during the Warring States period (481 BC-221 BC).


Modern times

In many respects, the fundamentals of hydraulic engineering haven’t changed since ancient times. Liquids are still moved for the most part by gravity through systems of canals and aqueducts, though the supply reservoirs may now be filled using pumps. The need for water has steadily increased from ancient times and the role of the hydraulic engineer is a critical one in supplying it. For example, without the efforts of people like William Mulholland the Los Angeles area would not have been able to grow as it has because it simply doesn’t have enough local water to support its population. The same is true for many of our world’s largest cities. In much the same way, the central valley of California could not have become such an important agricultural region without effective water management and distribution for irrigation. In a somewhat parallel way to what happened in California, the creation of the Tennessee Valley Authority (TVA) brought work and prosperity to the South by building dams to generate cheap electricity and control flooding in the region, making rivers navigable and generally modernizing life in the region.

Leonardo da Vinci (1452–1519) performed experiments, investigated and speculated on waves and jets, eddies and streamlining. Isaac Newton (1642–1727) by formulating the laws of motion and his law of viscosity, in addition to developing the calculus, paved the way for many great developments in fluid mechanics. Using Newton’s laws of motion, numerous 18th-century mathematicians solved many frictionless (zero-viscosity) flow problems. However, most flows are dominated by viscous effects, so engineers of the 17th and 18th centuries found the inviscid flow solutions unsuitable, and by experimentation they developed empirical equations, thus establishing the science of hydraulics.

Late in the 19th century, the importance of dimensionless numbers and their relationship to turbulence was recognized, and dimensional analysis was born. In 1904 Ludwig Prandtl published a key paper, proposing that the flow fields of low-viscosity fluids be divided into two zones, namely a thin, viscosity-dominated boundary layer near solid surfaces, and an effectively inviscid outer zone away from the boundaries. This concept explained many former paradoxes and enabled subsequent engineers to analyze far more complex flows. However, we still have no complete theory for the nature of turbulence, and so modern fluid mechanics continues to be combination of experimental results and theory.

The modern hydraulic engineer uses the same kinds of computer-aided design (CAD) tools as many of the other engineering disciplines while also making use of technologies like computational fluid dynamics to perform the calculations to accurately predict flow characteristics, GPS mapping to assist in locating the best paths for installing a system and laser-based surveying tools to aid in the actual construction of a system.

HOPE YOU LIKE THE POST DON’T FORGET TO CHECK OUT OUR LATEST POST’S !!



By AUTHOR

6 thoughts on “WHAT IS HYDRAULIC ENGINEERING ?”
  1. Hi there all, here every one is sharing these kinds of know-how, thus it’s good to read this website, and
    I used to pay a quick visit this blog everyday.

  2. Thanks for the marvelous posting! I really enjoyed reading it, you might be a great author.

    I will always bookmark your blog and will eventually come
    back very soon. I want to encourage one to continue your great writing, have a nice morning!

  3. Have you ever considered writing an e-book or guest authoring on other websites?
    I have a blog based upon on the same information you discuss and would love to have
    you share some stories/information. I know my audience would value
    your work. If you’re even remotely interested, feel free to send me an email.

  4. You can definitely see your expertise in the work you write.
    The sector hopes for more passionate writers such as you who aren’t afraid to say
    how they believe. All the time go after your heart.

  5. Terrific post but I was wondering if you could write a litte more
    on this subject? I’d be very thankful if you could elaborate a little bit
    more. Many thanks!

  6. I’m amazed, I must say. Rarely do I encounter a blog that’s equally educative and amusing, and let me tell
    you, you have hit the nail on the head. The problem is an issue that
    not enough folks are speaking intelligently about. I am very happy I stumbled across this in my search for something regarding this.

Leave a Reply

Your email address will not be published. Required fields are marked *