CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Joppa, L. N. et al. Filling in biodiversity threat gaps. Science352, 416–418 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers. Nature536, 143–145 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science366, eaax3100 (2019).

    PubMed 

    Google Scholar
     

  • 5.

    Kearney, M. Habitat, environment and niche: what are we modelling? Oikos115, 186–191 (2006).


    Google Scholar
     

  • 6.

    Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature404, 755–758 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Owens, I. P. F. & Bennett, P. M. Ecological basis of extinction risk in birds: Habitat loss versus human persecution and introduced predators. Proc. Natl. Acad. Sci.97, 12144–12148 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol.16, 909–923 (2002).


    Google Scholar
     

  • 9.

    Lindenmayer, D. et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett.11, 78–91 (2008).

    PubMed 

    Google Scholar
     

  • 10.

    Rodrigues, A. S. L. Improving coarse species distribution data for conservation planning in biodiversity-rich, data-poor, regions: no easy shortcuts. Anim. Conserv.14, 108–110 (2011).


    Google Scholar
     

  • 11.

    Di Marco, M., Watson, J. E. M., Possingham, H. P. & Venter, O. Limitations and trade-offs in the use of species distribution maps for protected area planning. J. Appl. Ecol.54, 402–411 (2017).


    Google Scholar
     

  • 12.

    Visconti, P. et al. Projecting Global Biodiversity Indicators under Future Development Scenarios. Conserv. Lett.9, 5–13 (2016).


    Google Scholar
     

  • 13.

    Santini, L. et al. Applying habitat and population‐density models to land‐cover time series to inform IUCN Red List assessments. Conserv. Biol. 00, cobi.13279 (2019).

  • 14.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change9, 323–329 (2019).

    ADS 

    Google Scholar
     

  • 15.

    Fischer, J., Lindenmayer, D. B. & Fazey, I. Appreciating Ecological Complexity: Habitat Contours as a Conceptual Landscape Model. Conserv. Biol.18, 1245–1253 (2004).


    Google Scholar
     

  • 16.

    Habitats Classification Scheme, Version 3.1. 1–14 IUCN. (2012).

  • 17.

    Tuanmu, M.-N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr.24, 1329–1339 (2015).


    Google Scholar
     

  • 18.

    Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ.222, 204–214 (2019).

    ADS 

    Google Scholar
     

  • 19.

    Weiss, M. & Banko, G. Ecosystem Type Map v3.1 – Terrestrial and marine ecosystems. Technical Paper No. 11/2018 (European Environment Agency, 2018).

  • 20.

    Brooks, T. M. et al. Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List. Trends Ecol. Evol.34, 977–986 (2019).

    PubMed 

    Google Scholar
     

  • 21.

    IUCN. IUCN 2016. The IUCN Red List of Threatened Species. Version 2016.1. (2016).

  • 22.

    Bird species distribution maps of the world. BirdLife International and Handbook of the Birds of the World, http://datazone.birdlife.org/species/requestdis (2019).

  • 23.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science344, 1246752–1246752 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci.104, 13384–13389 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B Biol. Sci.366, 2633–2641 (2011).


    Google Scholar
     

  • 26.

    Ficetola, G. F., Rondinini, C., Bonardi, A., Baisero, D. & Padoa-Schioppa, E. Habitat availability for amphibians and extinction threat: a global analysis. Divers. Distrib.21, 302–311 (2015).


    Google Scholar
     

  • 27.

    Sexton, J. O. et al. Conservation policy and the measurement of forests. Nat. Clim. Change6, 192–196 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Estes, L. et al. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses. Glob. Change Biol.24, 322–337 (2018).

    ADS 

    Google Scholar
     

  • 29.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett.8, 993–1009 (2005).


    Google Scholar
     

  • 30.

    Pineda, E. & Lobo, J. M. The performance of range maps and species distribution models representing the geographic variation of species richness at different resolutions. Glob. Ecol. Biogeogr.21, 935–944 (2012).


    Google Scholar
     

  • 31.

    Araújo, M. B. & Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr.33, 1677–1688 (2006).


    Google Scholar
     

  • 32.

    Golding, N. et al. The zoon r package for reproducible and shareable species distribution modelling. Methods Ecol. Evol.9, 260–268 (2018).


    Google Scholar
     

  • 33.

    Boitani, L. et al. What spatial data do we need to develop global mammal conservation strategies? Philos. Trans. R. Soc. B Biol. Sci.366, 2623–2632 (2011).


    Google Scholar
     

  • 34.

    Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens.12, 1044 (2020).

    ADS 

    Google Scholar
     

  • 35.

    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data5, 180214 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience51, 933 (2001).


    Google Scholar
     

  • 37.

    Dinerstein, E. et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience67, 534–545 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Sayre, R. et al. A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions. Mt. Res. Dev.38, 240–249 (2018).


    Google Scholar
     

  • 39.

    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe version 4. CGIAR-CSI SRTM 90 M Database srtm.csi.cgiar.org (2008).

  • 40.

    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol.296, 1–22 (2004).

    ADS 

    Google Scholar
     

  • 41.

    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature540, 418–422 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun.7, 13603 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature565, 222–225 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol.23, 3581–3599 (2017).

    ADS 

    Google Scholar
     

  • 45.

    Lesiv, M. et al. Estimating the global distribution of field size using crowdsourcing. Glob. Change Biol.25, 174–186 (2019).

    ADS 

    Google Scholar
     

  • 46.

    Lesiv, M. et al. Methodology for generating a global forest management layer. Zenodo
    https://doi.org/10.5281/zenodo.3933966 (2020).

  • 47.

    Lesiv, M. et al. Global planted trees extent 2015. Zenodo
    https://doi.org/10.5281/zenodo.3931930 (2020).

  • 48.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science342, 850–3 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Fritz, S. et al. Geo-Wiki: An online platform for improving global land cover. Environ. Model. Softw.31, 110–123 (2012).


    Google Scholar
     

  • 50.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles22 (2008).

  • 51.

    Hoskins, A. J. et al. Downscaling land-use data to provide global 30″ estimates of five land-use classes. Ecol. Evol.6, 3040–3055 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. New anthropogenic land use estimates for the Holocene; HYDE 3.2. Earth Syst. Sci. Data Discuss. 1–40 (2016).

  • 53.

    Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data5, 180227 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Chilonda, P. & Otte, J. Indicators to monitor trends in livestock production at national, regional and international levels. Livest. Res. Rural Dev. 18 (2006).

  • 55.

    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ.202, 18–27 (2017).

    ADS 

    Google Scholar
     

  • 56.

    Jung, M. et al. A global map of terrestrial habitat types. Zenodo
    https://doi.org/10.5281/zenodo.3666245 (2020).

  • 57.

    Hengl, T., Jung, M. & Visconti, P. Potential distribution of land cover classes (Potential Natural Vegetation) at 250 m spatial resolution. Zenodo
    https://doi.org/10.5281/zenodo.3631254 (2020).

  • 58.

    Sorte, F. A. L. & Somveille, M. Survey completeness of a global citizen‐science database of bird occurrence. Ecography43, 34–43 (2020).


    Google Scholar
     

  • 59.

    Donald, P. F. et al. Important Bird and Biodiversity Areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. Int.29, 177–198 (2019).


    Google Scholar
     

  • 60.

    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol.4, 4701–4735 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol.7, 145–188 (2017).

    PubMed 

    Google Scholar
     

  • 62.

    See, L. et al. LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sens.9, 754 (2017).

    ADS 

    Google Scholar
     

  • 63.

    Kuhn, M. et al. Caret: Classification and regression training. (R Project, 2020).

  • 64.

    Watanabe, K. & Tokita, K. Macaca fuscata. The IUCN Red List of Threatened Species, https://doi.org/10.2305/IUCN.UK.2008.RLTS.T12552A3355997.en (2008).

  • 65.

    Lesiv, M. et al. Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery for Monitoring Applications. Earth Syst. Sci. Data Discuss. 1–24 (2018).

  • 66.

    Bunce, R. G. H. et al. A standardized procedure for surveillance and monitoring European habitats and provision of spatial data. Landsc. Ecol.23, 11–25 (2008).


    Google Scholar
     

  • 67.

    Janssen, J. et al. European Red list of Habitats. Part 2. Terrestrial and freshwater habitats. European Union, https://doi.org/10.2779/091372 (2016).

  • 68.

    Kleyer, M. et al. Mosaic cycles in agricultural landscapes of Northwest Europe. Basic Appl. Ecol.8, 295–309 (2007).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *