CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268. https://doi.org/10.4161/gmic.1.4.12778 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Derrien, M. Akkermansia muciniphila gen. nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476. https://doi.org/10.1099/ijs.0.02873-0 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65, 426–436. https://doi.org/10.1136/gutjnl-2014-308778 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Karlsson, C. L. J. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261. https://doi.org/10.1038/oby.2012.110 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108. https://doi.org/10.1371/journal.pone.0071108 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428. https://doi.org/10.1038/ajg.2010.281 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Rajilić-Stojanović, M., Shanahan, F., Guarner, F. & De Vos, W. M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488. https://doi.org/10.1097/MIB.0b013e31827fec6d (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Swidsinski, A. et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60, 34–40. https://doi.org/10.1136/gut.2009.191320 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648. https://doi.org/10.1128/AEM.01226-07 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770. https://doi.org/10.1128/AEM.01477-07 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Collado, M. C., Laitinen, K., Salminen, S. & Isolauri, E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72, 77–85. https://doi.org/10.1038/pr.2012.42 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Aakko, J. et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes 8, 563–567. https://doi.org/10.3920/BM2016.0185 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014. https://doi.org/10.1128/AEM.00242-14 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Azad, M. B. et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Can. Med. Assoc. J. 185, 385–394. https://doi.org/10.1503/cmaj.121189 (2013).

    Article 

    Google Scholar
     

  • 15.

    Bergström, A. et al. Establishment of intestinal microbiota during early life: A longitudinal. Explor. Study Large Cohort Danish Infants. https://doi.org/10.1128/AEM.00342-14 (2014).

    Article 

    Google Scholar
     

  • 16.

    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703. https://doi.org/10.1016/j.chom.2015.04.004 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Neville, M. C. et al. Lactation and neonatal nutrition: Defining and refining the critical questions. J. Mammary Gland Biol. Neoplasia 17, 167–188. https://doi.org/10.1007/s10911-012-9261-5 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335. https://doi.org/10.1038/nrmicro2746 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480. https://doi.org/10.1021/jf0615810 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez-Munguia, B. & Newburg, D. S. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112–14120. https://doi.org/10.1074/jbc.M207744200 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Stahl, B. et al. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 223, 218–226. https://doi.org/10.1006/abio.1994.1577 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Urashima, T., Hirabayashi, J., Sato, S. & Kobata, A. Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends Glycosci. Glycotechnol. 30, 51–65. https://doi.org/10.4052/tigg.1734.1SE (2018).

    Article 

    Google Scholar
     

  • 23.

    Ayechu-Muruzabal, V. et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front. Pediatr. 6, 239. https://doi.org/10.3389/fped.2018.00239 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Zivkovic, A. M., German, J. B., Lebrilla, C. B. & Mills, D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. 108, 4653–4658. https://doi.org/10.1073/pnas.1000083107 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151. https://doi.org/10.1021/pr100362f (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Weiss, G. A. & Hennet, T. The role of milk sialyllactose in intestinal bacterial colonization. Adv. Nutr. 3, 483S-488S. https://doi.org/10.3945/an.111.001651 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22, 1147–1162. https://doi.org/10.1093/glycob/cws074 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Vandenplas, Y. et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161. https://doi.org/10.3390/nu10091161 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Garrido, D., Dallas, D. C. & Mills, D. A. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: Mechanisms and implications. Microbiology (United Kingdom) 159, 649–664. https://doi.org/10.1099/mic.0.064113-0 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81. https://doi.org/10.3389/fgene.2015.00081 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Bansil, R. & Turner, B. S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11, 164–170. https://doi.org/10.1016/j.cocis.2005.11.001 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Abodinar, A., Tømmeraas, K., Ronander, E., Smith, A. M. & Morris, G. A. The physicochemical characterisation of pepsin degraded pig gastric mucin. Int. J. Biol. Macromol. 87, 281–286. https://doi.org/10.1016/J.IJBIOMAC.2016.02.062 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. 105, 15064–15069. https://doi.org/10.1073/pnas.0803124105 (2008).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 83, e01014-e1017. https://doi.org/10.1128/AEM.01014-17 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Ottman, N. et al. Characterization of outer membrane proteome of akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 7, 1157. https://doi.org/10.3389/fmicb.2016.01157 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Moran, A. P., Gupta, A. & Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412–1425. https://doi.org/10.1136/gut.2010.212704 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Kumazaki, T. & Yoshida, A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl. Acad. Sci. 81, 4193–4197. https://doi.org/10.1073/pnas.81.13.4193 (1984).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Korpela, K. et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 8, 13757. https://doi.org/10.1038/s41598-018-32037-6 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Engels, C., Ruscheweyh, H.-J., Beerenwinkel, N., Lacroix, C. & Schwab, C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol. 7, 1–12. https://doi.org/10.3389/fmicb.2016.00713 (2016).

    Article 

    Google Scholar
     

  • 40.

    Amin, H. M., Hashem, A. M., Ashour, M. S. & Hatti-Kaul, R. 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid. J. Genet. Eng. Biotechnol. 11, 53–59. https://doi.org/10.1016/j.jgeb.2012.12.002 (2013).

    Article 

    Google Scholar
     

  • 41.

    Staib, L. & Fuchs, T. M. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.01116 (2015).

    Article 

    Google Scholar
     

  • 42.

    Faber, F. et al. Respiration of microbiota-derived 1,2-propanediol drives salmonella expansion during colitis. PLOS Pathog. 13, e1006129. https://doi.org/10.1371/journal.ppat.1006129 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Huang, K. et al. Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr. Res. 415, 60–65. https://doi.org/10.1016/j.carres.2015.08.001 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624. https://doi.org/10.1038/ncomms8624 (2015).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876. https://doi.org/10.1371/journal.pone.0016876 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Nishiyama, K. et al. Bifidobacterium bifidum extracellular sialidase enhances adhesion to the mucosal surface and supports carbohydrate assimilation. MBio https://doi.org/10.1128/mBio.00928-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Nishiyama, K. et al. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 52, 22–28. https://doi.org/10.1016/j.anaerobe.2018.05.007 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Crost, E. H. et al. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312. https://doi.org/10.1080/19490976.2016.1186334 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Brigham, C. et al. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J. Bacteriol. 191, 3629–3638. https://doi.org/10.1128/JB.00811-08 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Chia, L. W. et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111, 859–873. https://doi.org/10.1007/s10482-018-1040-x (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Kosciow, K. & Deppenmeier, U. Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.246 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Guo, B.-S. et al. Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj. J. 35, 255–263. https://doi.org/10.1007/s10719-018-9824-9 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Kosciow, K. & Deppenmeier, U. Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation. Microbiologyopen https://doi.org/10.1002/mbo3.796 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    van der Ark, K. C. H. et al. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb. Biotechnol. 11, 476–485. https://doi.org/10.1111/1751-7915.13033 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Wang, M. et al. Cloning, purification and biochemical characterization of two β-N-acetylhexosaminidases from the mucin-degrading gut bacterium Akkermansia muciniphila. Carbohydr. Res. 457, 1–7. https://doi.org/10.1016/j.carres.2017.12.007 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335. https://doi.org/10.1038/ismej.2014.14 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B 12 production by intestinal symbionts. MBio 8, 1–14. https://doi.org/10.1128/mBio.00770-17 (2017).

    Article 

    Google Scholar
     

  • 58.

    Allen, L. H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 3, 362–369. https://doi.org/10.3945/an.111.001172 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004. https://doi.org/10.1371/journal.pone.0173004 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113. https://doi.org/10.1038/nm.4236 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    McPhee, M. D., Atkinson, S. A. & Cole, D. E. C. Quantitation of free sulfate and total sulfoesters in human breast milk by ion chromatography. J. Chromatogr. B Biomed. Sci. Appl. 527, 41–50. https://doi.org/10.1016/S0378-4347(00)82081-2 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Coppa, G. V. et al. Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology 21, 295–303. https://doi.org/10.1093/glycob/cwq164 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Tseng, T.-T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol. 9, S2. https://doi.org/10.1186/1471-2180-9-S1-S2 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Galdiero, S. et al. Microbe–host interactions: Structure and role of gram-negative bacterial porins. Curr. Protein Pept. Sci. 13, 843–854. https://doi.org/10.2174/138920312804871120 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Brugman, S., Perdijk, O., van Neerven, R. J. J. & Savelkoul, H. F. J. Mucosal immune development in early life: Setting the stage. Arch. Immunol. Ther. Exp. (Warsz) 63, 251–268. https://doi.org/10.1007/s00005-015-0329-y (2015).

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Duerr, C. U. & Hornef, M. W. The mammalian intestinal epithelium as integral player in the establishment and maintenance of host–microbial homeostasis. Semin. Immunol. 24, 25–35. https://doi.org/10.1016/j.smim.2011.11.002 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 67.

    Hoskins, L. C. et al. Mucin degradation in human colon ecosystems isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest 75, 944–953 (1985).

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Stams, A. J., Van Dijk, J. B., Dijkema, C. & Plugge, C. M. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59, 1114–1119 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 69.

    Mank, M., Welsch, P., Heck, A. J. R. & Stahl, B. Label-free targeted LC-ESI-MS2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal. Bioanal. Chem. 411, 231–250. https://doi.org/10.1007/s00216-018-1434-7 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 70.

    Rupakula, A. et al. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: Lessons from tiered functional genomics. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120325. https://doi.org/10.1098/rstb.2012.0325 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 71.

    Lu, J. et al. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J. Proteomics 75, 34–43. https://doi.org/10.1016/j.jprot.2011.07.031 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Wendrich, J. R., Boeren, S., Möller, B. K., Weijers, D. & De Rybel, B. In vivo identification of plant protein complexes using IP-MS/MS. in Methods in Molecular Biology vol. 1497 147–158 (Humana Press, New York, NY, 2017). https://doi.org/10.1007/978-1-4939-6469-7_14.

  • 73.

    Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754. https://doi.org/10.1083/jcb.200911091 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Smaczniak, C. et al. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protocols https://doi.org/10.1038/nprot.2012.129 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 75.

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. https://doi.org/10.1074/mcp.M113.031591 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 76.

    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 77.

    Bielow, C., Mastrobuoni, G. & Kempa, S. Proteomics quality control: Quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. https://doi.org/10.1021/acs.jproteome.5b00780 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 78.

    Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. https://doi.org/10.1093/nar/gkv1145 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Morris, J. B. Enzymatic assay for subnanomole amounts of l-fucose. Anal. Biochem. 121, 129–134. https://doi.org/10.1016/0003-2697(82)90565-6 (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Rosendale, D. I. et al. Characterizing kiwifruit carbohydrate utilization in vitro and its consequences for human faecal microbiota. J. Proteome Res. 11, 5863–5875. https://doi.org/10.1021/pr300646m (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 81.

    van Gelder, A. H., Aydin, R., Alves, M. M. & Stams, A. J. M. 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. Microb. Biotechnol. 5, 573–578. https://doi.org/10.1111/j.1751-7915.2011.00318.x (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *