CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Muscente, A. D. et al. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proc. Natl. Acad. Sci. U.S.A. 115, 5217–5222 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Carmichael, S. K., Waters, J. A., Königshof, P., Suttner, T. J. & Kido, E. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression. Glob. Planet. Change 183, 102984 (2019).


    Google Scholar
     

  • 3.

    Joachimski, M. M. & Buggisch, W. Anoxic events in the late Frasnian—Causes of the Frasnian–Famennian faunal crisis?. Geology 21, 675–678 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Joachimski, M. M. & Buggisch, W. Conodont apatite δ13C signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30, 711–714 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Whalen, M. T. et al. Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian–Famennian transition in western Canada and southern China: Implications for carbon and nutrient cycling and mass extinction. Geol. Soc. London Spec. Publ. 414, 414–418 (2015).


    Google Scholar
     

  • 6.

    De Vleeschouwer, D. et al. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Commun. 8, 2268 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Claeys, P., Casier, J.-G. & Margolis, S. V. Microtektites and mass extinctions: Evidence for a Late Devonian asteroid impact. Science 257, 1102–1104 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    McGhee, G. R. The ‘multiple impacts hypothesis’ for mass extinction: A comparison of the Late Devonian and the late Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 176, 47–58 (2001).


    Google Scholar
     

  • 9.

    Racki, G., Rakocinski, M., Marynowski, L. & Wignall, P. B. Mercury enrichments and the Frasnian–Famennian biotic crisis: A volcanic trigger proved?. Geology 46, 543–546 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Racki, G. A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions?. Glob. Planet. Change 189, 103174 (2020).


    Google Scholar
     

  • 11.

    Joachimski, M. M., Pancost, R. D., Freeman, K. H., Ostertag-Henning, C. & Buggisch, W. Carbon isotope geochemistry of the Frasnian–Famennian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 91–109 (2002).


    Google Scholar
     

  • 12.

    Thompson, J. B. & Newton, C. R. Late Devonian mass extinction; episodic climatic cooling or warming? In Devonian of the World (eds McMillen, N. J. et al.) 29–34 (Canadian Society of Petroleum Geologists, Memoirs, Calgary, 1988).


    Google Scholar
     

  • 13.

    Averbuch, O. et al. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)?. Terra Nov. 17, 25–34 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Algeo, J. T. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes and marine anoxic events. Philos. Trans. R. Soc. Lond. 353, 113–130 (1998).


    Google Scholar
     

  • 15.

    Becker, R. T. et al. The Devonian Period. The Geologic Time Scale 2012 vols 1–2 (F. M. Gradstein, J. G. Ogg, M. Schmitz and G. Ogg, 2012).

  • 16.

    Kaufmann, B. Calibrating the Devonian time scale: A synthesis of U-Pb ID-TIMS ages and conodont stratigraphy. Earth-Sci. Rev. 76, 175–190 (2006).

    ADS 

    Google Scholar
     

  • 17.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The geologic time scale (Cambridge University Press, Cambridge, 2012).


    Google Scholar
     

  • 18.

    Tucker, R. D. et al. New U-Pb zircon ages and the duration and division of Devonian time. Earth Planet. Sci. Lett. 158, 175–186 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Kaufmann, B., Trapp, E. & Mezger, K. The numerical age of the upper Frasnian (Upper Devonian) Kellwasser Horizons: A new U-Pb Zircon date from steinbruch Schmidt (Kellerwald, Germany). J. Geol. 112, 495–501 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Da Silva, A. C. et al. Refining the early Devonian time scale using Milankovitch cyclicity in Lochkovian–Pragian sediments (Prague Synform, Czech Republic). Earth Planet. Sci. Lett. 455, 125 (2016).

    ADS 

    Google Scholar
     

  • 21.

    Grabowski, J., Narkiewicz, M. & de Vleeschouwer, D. Forcing factors of the magnetic susceptibility signal in lagoonal and subtidal depositional cycles from the Zache mie section (Eifelian, Holy Cross Mountains, Poland). Geol. Soc. Lond. Spec. Publ. 414, 414 (2015).


    Google Scholar
     

  • 22.

    Pas, D. et al. Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA). Earth Planet. Sci. Lett. 488, 102–114 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    De Vleeschouwer, D. et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth Planet. Sci. Lett. 365, 25–37 (2013).

    ADS 

    Google Scholar
     

  • 24.

    Myrow, P. M. et al. High-precision U–Pb age and duration of the latest Devonian (Famennian) Hangenberg event, and its implications. Terra Nov. 26, 222–229 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Percival, L. M. E. et al. Precisely dating the Frasnian–Famennian boundary: Implications for the cause of the Late Devonian mass extinction. Sci. Rep. 8, 9578 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Devleeschouwer, X., Herbosch, A. & Preat, A. Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 171–193 (2002).


    Google Scholar
     

  • 27.

    Schindler, E. Die Kellwasser-Krise (hohe Frasne-Stufe, Ober Devon). Gött. Arb. Geol. Paläontol. 46, 1–115 (1990).


    Google Scholar
     

  • 28.

    Feist, R. & Schindler, E. Trilobites during the Frasnian Kellwasser crisis in European Late Devonian cephalopod limestones. Cour. Forsch. Inst. Senckenb. 169, 195–223 (1994).


    Google Scholar
     

  • 29.

    de Winter, N. J., Sinnesael, M., Makarona, C., Vansteenberge, S. & Claeys, P. Trace element analyses of carbonates using portable and micro-X-ray fluorescence: Performance and optimization of measurement parameters and strategies. J. Anal. At. Spectrom. 32, 1211–1223 (2017).


    Google Scholar
     

  • 30.

    Friedman, I., O’neil, J. & Cebula, G. Two new carbonate stable-isotope standards. Geostand. Newsl. 6, 11–12 (1982).

    CAS 

    Google Scholar
     

  • 31.

    Core Team, R. R: A language and environment for computing (2018).

  • 32.

    Meyers, S. R. astrochron: An R Package for Astrochronology (2014). https://cran.r-project.org/package=astrochron. Accessed July 13, 2020.

  • 33.

    Meyers, S. R. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Sci. Rev. 190, 190–223 (2019).

    ADS 

    Google Scholar
     

  • 34.

    Meyers, S. R. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography 30, 1625–1640 (2015).

    ADS 

    Google Scholar
     

  • 35.

    Berger, A., Loutre, M. F. & Laskar, J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies. Science 255, 560–566 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    ADS 

    Google Scholar
     

  • 37.

    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: A new orbital solution for the long term motion of the Earth. Astron. Astrophys. 89, 1–15 (2011).

    MATH 

    Google Scholar
     

  • 38.

    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    ADS 

    Google Scholar
     

  • 39.

    Gouhier, T. C., Grinsted, A. & Viliam, S. R Package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (2018).

  • 40.

    Da Silva, A. C. et al. Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks—Merits and pitfalls: Examples from the Devonian in Belgium. Mar. Pet. Geol. 46, 173 (2013).


    Google Scholar
     

  • 41.

    Calvert, S. E. & Pedersen, T. F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Dev. Mar. Geol. 1, 567–644 (2007).


    Google Scholar
     

  • 42.

    Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W. & Brett, C. E. Black shale deposition and faunal overturn in the Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography 15, 280–291 (2000).

    ADS 

    Google Scholar
     

  • 43.

    Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Wignall, P. B. Model for transgressive black shales?. Geology 19, 167–170 (1991).

    ADS 

    Google Scholar
     

  • 45.

    Sinnesael, M. et al. The cyclostratigraphy intercomparison project (CIP): Consistency, merits and pitfalls. Earth-Sci. Rev. 199, 102965 (2019).


    Google Scholar
     

  • 46.

    Herbert, T. D. & Fischer, A. G. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Meyers, S. R., Sageman, B. B. & Arthur, M. A. Obliquity forcing of organic matter accumulation during oceanic anoxic event 2. Paleoceanography 27, 1–19 (2012).


    Google Scholar
     

  • 48.

    Mitchell, R. N. et al. Oceanic anoxic cycles? Orbital prelude to the Bonarelli level (OAE 2). Earth Planet. Sci. Lett. 267, 1–16 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Gambacorta, G., Menichetti, E., Trincianti, E. & Torricelli, S. Orbital control on cyclical primary productivity and benthic anoxia: Astronomical tuning of the Telychian stage (Early Silurian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 495, 152–162 (2018).


    Google Scholar
     

  • 50.

    Hilgen, F. J. et al. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 136, 495–510 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Rohling, E. J., Marino, G. & Grant, K. M. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Sci. Rev. 143, 62–97 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Batenburg, S. J. et al. Orbital control on the timing of oceanic anoxia in the Late Cretaceous. Clim. Past 12, 2009–2016 (2016).


    Google Scholar
     

  • 53.

    De Vleeschouwer, D. & Parnell, A. C. Reducing time-scale uncertainty for the devonian by integrating astrochronology and bayesian statistics. Geology 42, 491–494 (2014).

    ADS 

    Google Scholar
     

  • 54.

    Blakey, R. C. Global Paleogeography. https://deeptimemaps.com/global-paleogeography-and-tectonics-in-deep-time-series/ (2016). Accessed July 13, 2020.

  • 55.

    De Vleeschouwer, D., Whalen, M. T., Day, J. E. & Claeys, P. Cyclostratigraphic calibration of the Frasnian (Late Devonian) time-scale (Western Alberta, Canada). Geol. Soc. Am. Bull. 124, 928–942 (2012).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *