CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. (2018).

  • 2.

    Okocha, R. C., Olatoye, I. O. & Adedeji, O. B. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews 39, 21, https://doi.org/10.1186/s40985-018-0099-2 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Cabello, F. C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology 8, 1137–1144 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology 15, 1917–1942, https://doi.org/10.1111/1462-2920.12134 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Defoirdt, T., Sorgeloos, P. & Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current opinion in microbiology 14, 251–258 (2011).

    Article 

    Google Scholar
     

  • 6.

    Muziasari, W. I. et al. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic Sea fish farms. Frontiers in microbiology 7, 2137 (2017).

    Article 

    Google Scholar
     

  • 7.

    Vollaard, E. & Clasener, H. Colonization resistance. Antimicrobial agents and chemotherapy 38, 409 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Wang, E. et al. Consumption of florfenicol-medicated feed alters the composition of the channel catfish intestinal microbiota including enriching the relative abundance of opportunistic pathogens. Aquaculture 501, 111–118, https://doi.org/10.1016/j.aquaculture.2018.11.019 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Looft, T. et al. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. The ISME journal 8, 1566 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Looft, T. et al. In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences 109, 1691–1696, https://doi.org/10.1073/pnas.1120238109 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Liu, Y. et al. Gibel carp Carassius auratus gut microbiota after oral administration of trimethoprim/sulfamethoxazole. Diseases of aquatic organisms 99, 207–213 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Zhou, Z. et al. Gut microbial status induced by antibiotic growth promoter alters the prebiotic effects of dietary DVAQUA® on Aeromonas hydrophila-infected tilapia: Production, intestinal bacterial community and non-specific immunity. Veterinary microbiology 149, 399–405 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Ringø, E. et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquacult Nutr 22, https://doi.org/10.1111/anu.12346 (2016).

  • 14.

    Gupta, S., Fernandes, J. & Kiron, V. Antibiotic-Induced Perturbations Are Manifested in the Dominant Intestinal Bacterial Phyla of Atlantic Salmon. Microorganisms 7, 233 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Almeida, A. R., Alves, M., Domingues, I. & Henriques, I. The impact of antibiotic exposure in water and zebrafish gut microbiomes: A 16S rRNA gene-based metagenomic analysis. Ecotoxicology and Environmental Safety 186, 109771, https://doi.org/10.1016/j.ecoenv.2019.109771 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Narrowe, A. B. et al. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure. Microbiome 3, 6, https://doi.org/10.1186/s40168-015-0069-6 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Kotzamanis, Y., Gisbert, E., Gatesoupe, F., Infante, J. Z. & Cahu, C. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 147, 205–214 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Gatesoupe, F. J. et al. The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture 422, https://doi.org/10.1016/j.aquaculture.2013.11.011 (2014).

  • 19.

    Sun, H., Jami, E., Harpaz, S. & Mizrahi, I. Involvement of dietary salt in shaping bacterial communities in European sea bass (Dicentrarchus labrax). Scientific reports 3, 1558 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Carda-Dieguez, M., Mira, A. & Fouz, B. Pyrosequencing survey of intestinal microbiota diversity in cultured sea bass (Dicentrarchus labrax) fed functional diets. FEMS Microbiol Ecol 87, https://doi.org/10.1111/1574-6941.12236 (2014).

  • 21.

    Gatesoupe, F.-J. et al. The highly variable microbiota associated to intestinal mucosa correlates with growth and hypoxia resistance of sea bass, Dicentrarchus labrax, submitted to different nutritional histories. BMC Microbiology 16, 266, https://doi.org/10.1186/s12866-016-0885-2 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Kokou, F. et al. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nature Microbiology, 1–10, https://doi.org/10.1038/s41564-019-0560-0 (2019).

  • 23.

    Rosado, D. et al. Effects of disease, antibiotic treatment and recovery trajectory on the microbiome of farmed seabass (Dicentrarchus labrax). Scientific Reports 9, 18946, https://doi.org/10.1038/s41598-019-55314-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Pimentel, T., Marcelino, J., Ricardo, F., Soares, A. M. V. M. & Calado, R. Bacterial communities 16S rDNA fingerprinting as a potential tracing tool for cultured seabass Dicentrarchus labrax. Scientific Reports 7, 11862, https://doi.org/10.1038/s41598-017-11552-y (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Rigos, G. & Troisi, G. Antibacterial agents in Mediterranean finfish farming: a synopsis of drug pharmacokinetics in important euryhaline fish species and possible environmental implications. Reviews in Fish Biology and Fisheries 15, 53–73 (2005).

    Article 

    Google Scholar
     

  • 26.

    Rigos, G., Bitchava, K. & Nengas, I. Antibacterial drugs in products originating from aquaculture: assessing the risks to public welfare. Mediterranean marine science 11, 33–42 (2010).

    Article 

    Google Scholar
     

  • 27.

    Lulijwa, R., Rupia, E. J. & Alfaro, A. C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture (2019).

  • 28.

    Wilson, J. & Castro, L. 1-Morphological diversity of the gastrointestinal tract in fishes. Fish physiology 30, 1–55 (2010).

    Article 

    Google Scholar
     

  • 29.

    Nayak, S. K. Role of gastrointestinal microbiota in fish. Aquac Res 41, https://doi.org/10.1111/j.1365-2109.2010.02546.x (2010).

  • 30.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581, https://doi.org/10.1038/nmeth.3869 https://www.nature.com/articles/nmeth.3869#supplementary-information (2016).

  • 31.

    Kurtz, Z. D. et al. Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLOS Computational Biology 11, e1004226, https://doi.org/10.1371/journal.pcbi.1004226 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biology 12, R60, https://doi.org/10.1186/gb-2011-12-6-r60 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotech 31, 814–821, https://doi.org/10.1038/nbt.2676 http://www.nature.com/nbt/journal/v31/n9/abs/nbt.2676.html#supplementary-information (2013).

  • 34.

    Tyagi, A., Singh, B., Thammegowda, N. K. B. & Singh, N. K. Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Archives of microbiology 201, 295–303 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Chen, B. et al. Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. Water Research 134, 200–208, https://doi.org/10.1016/j.watres.2018.02.003 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Done, H. Y., Venkatesan, A. K. & Halden, R. U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? The. AAPS journal 17, 513–524 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Nathan, C. Antibiotics at the crossroads. Nature 431, 899 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nature Reviews Microbiology 9, 233 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Jakobsson, H. E. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PloS one 5, e9836 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Navarrete, P., Mardones, P., Opazo, R., Espejo, R. & Romero, J. Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. Journal of Aquatic Animal Health 20, 177–183 (2008).

    Article 

    Google Scholar
     

  • 41.

    López Nadal, A., Peggs, D., Wiegertjes, G. F. & Brugman, S. Exposure to antibiotics affects saponin immersion-induced immune stimulation and shift in microbial composition in zebrafish larvae. Frontiers in microbiology 9, 2588 (2018).

    Article 

    Google Scholar
     

  • 42.

    Sáenz, J. S. et al. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome 7, 24, https://doi.org/10.1186/s40168-019-0632-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Carlson, J. M., Hyde, E. R., Petrosino, J. F., Manage, A. B. & Primm, T. P. The host effects of Gambusia affinis with an antibiotic-disrupted microbiome. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 178, 163–168 (2015).

    CAS 

    Google Scholar
     

  • 44.

    Carlson, J. M., Leonard, A. B., Hyde, E. R., Petrosino, J. F. & Primm, T. P. Microbiome disruption and recovery in the fish Gambusia affinis following exposure to broad-spectrum antibiotic. Infection and drug resistance 10, 143 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Christensen, A. M., Ingerslev, F. & Baun, A. Ecotoxicity of mixtures of antibiotics used in aquacultures. Environmental Toxicology and Chemistry 25, 2208–2215, https://doi.org/10.1897/05-415r.1 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Austin, B. & Al-Zahrani, A. M. J. The effect of antimicrobial compounds on the gastrointestinal microflora of rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology 33, 1–14, https://doi.org/10.1111/j.1095-8649.1988.tb05444.x (1988).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Gajardo, K. et al. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research. Scientific Reports 6, 30893, https://doi.org/10.1038/srep30893 http://www.nature.com/articles/srep30893#supplementary-information (2016).

  • 48.

    Hallali, E. et al. Dietary salt levels affect digestibility, intestinal gene expression, and the microbiome, in Nile tilapia (Oreochromis niloticus). PloS one 13, e0202351 (2018).

    Article 

    Google Scholar
     

  • 49.

    Høj, L. et al. Crown-of-thorns sea star, <em>Acanthaster</em> cf. <em>solaris</em>, have tissue-characteristic microbiomes with potential roles in health and reproduction. Applied and Environmental Microbiology, 10.1128/aem.00181-18 (2018).

  • 50.

    Nikolopoulou, D. et al. Patterns of gastric evacuation, digesta characteristics and pH changes along the gastrointestinal tract of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 158, 406–414 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Derrick, C. W. & Reilly, K. M. Erythromycin, Lincomycin, and Clindamycin. Pediatric Clinics of North America 30, 63–69, https://doi.org/10.1016/S0031-3955(16)34320-6 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Calduch-Giner, J. A., Sitjà-Bobadilla, A. & Pérez-Sánchez, J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Frontiers in Physiology 7, https://doi.org/10.3389/fphys.2016.00359 (2016).

  • 53.

    Bakke, A. M., Glover, C. & Krogdahl, Å. In Fish physiology Vol. 30 57-110 (Elsevier, 2010).

  • 54.

    Katayama, Y., Zhang, H.-Z., Hong, D. & Chambers, H. F. Jumping the barrier to β-lactam resistance in Staphylococcus aureus. Journal of Bacteriology 185, 5465–5472 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Li, T. et al. Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis. Scientific reports 6, 30606 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 56.

    Wong, S. et al. Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Applied and environmental microbiology 79, 4974–4984 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Cochetière, D. L. M. F. et al. Resilience of the Dominant Human Fecal Microbiota upon Short-Course Antibiotic Challenge. Journal of Clinical Microbiology 43, 5588–5592, https://doi.org/10.1128/jcm.43.11.5588-5592.2005 (2005).

    Article 

    Google Scholar
     

  • 58.

    Nachin, L., Nannmark, U. & Nyström, T. Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. Journal of bacteriology 187, 6265–6272 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Kokou, F. et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. eLife 7, e36398, https://doi.org/10.7554/eLife.36398 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Kokou, F. et al. Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 231, 11–18, https://doi.org/10.1016/j.cbpa.2019.01.018 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 61.

    Pfeiffer, T. J., Summerfelt, S. T. & Watten, B. J. Comparative performance of CO2 measuring methods: Marine aquaculture recirculation system application. Aquacultural Engineering 44, 1–9, https://doi.org/10.1016/j.aquaeng.2010.10.001 (2011).

    Article 

    Google Scholar
     

  • 62.

    Roeselers, G. et al. Evidence for a core gut microbiota in the zebrafish. ISME J 5, https://doi.org/10.1038/ismej.2011.38 (2011).

  • 63.

    Fantini, E., Gianese, G., Giuliano, G. & Fiore, A. In Bacterial Pangenomics: Methods and Protocols (eds Alessio Mengoni, Marco Galardini, & Marco Fondi) 77–90 (Springer New York, 2015).

  • 64.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology 73, 5261–5267 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 65.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The. ISME journal 6, 610–618 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108, 4516–4522, https://doi.org/10.1073/pnas.1000080107 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 67.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2019).

  • 68.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Team. tRDC nlme: linear and nonlinear mixed effects models. R package version 3, 1–102 (2013).


    Google Scholar
     

  • 69.

    Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral ecology 26, 32–46 (2001).


    Google Scholar
     

  • 70.

    Love, M. I., Anders, S. & Huber, W. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome biology 15, 550 (2014).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *