CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    Article 
    ADS 

    Google Scholar
     

  • 2.

    Ebner, M., Chung, D. W., García, R. E. & Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4, 1–6 (2014).

    Article 

    Google Scholar
     

  • 3.

    Bae, C.-J., Erdonmez, C. K., Halloran, J. W. & Chiang, Y.-M. Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance. Adv. Mater. 25, 1254–1258 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Zhang, Y. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. 114, 3584–3589 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 5.

    Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 7.

    Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E. & Novák, P. High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, A474 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Bibienne, T. et al. Eco-friendly process toward collector- and binder-free, high-energy density electrodes for lithium-ion batteries. J. Solid State Electrochem. 21, 1407–1416 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science (80-) 356, 599–604 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 10.

    Wang, B. et al. High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett. 13, 5578–5584 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 11.

    Gallagher, K. G. et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 163, A138–A149 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Billaud, J., Bouville, F., Magrini, T., Villevieille, C. & Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 13.

    Sander, J. S., Erb, R. M., Li, L., Gurijala, A. & Chiang, Y.-M. High-performance battery electrodes via magnetic templating. Nat. Energy 1, 16099 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 14.

    Minas, C. et al. Freezing of gelled suspensions: A facile route toward mesoporous TiO2 particles for high-capacity lithium-ion electrodes. ACS Appl. Nano Mater. 1, 6622–6629 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Xie, D., Zhang, M., Wu, Y., Xiang, L. & Tang, Y. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv. Funct. Mater. 30, 1906770 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Wang, L., Han, J., Kong, D., Tao, Y. & Yang, Q.-H. Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano-Micro Lett. 11, 5 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 17.

    Jin, S., Jiang, Y., Ji, H. & Yu, Y. Advanced 3D current collectors for lithium-based batteries. Adv. Mater. 1802014, 1802014 (2018).

    Article 

    Google Scholar
     

  • 18.

    Wu, D., Zhang, W., Feng, Y. & Ma, J. Necklace-like carbon nanofibers encapsulating V 3 S 4 microspheres for ultrafast and stable potassium-ion storage. J. Mater. Chem. A 8, 2618–2626 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Zhao, Q. et al. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 15, 721–726 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 20.

    Ji, H. et al. Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes. Nano Lett. 12, 2446–2451 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 21.

    Villevieille, C. et al. The good reactivity of lithium with nanostructured copper phosphide. J. Mater. Chem. 18, 5956 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 23.

    Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).

    Article 
    ADS 

    Google Scholar
     

  • 24.

    Freunberger, S. A. True performance metrics in beyond-intercalation batteries. Nat. Energy 2, 17091 (2017).

    Article 
    ADS 

    Google Scholar
     

  • 25.

    Zhou, X. et al. Strategies towards low-cost dual-ion batteries with high performance. Angew. Chemie Int. Ed. 59, 3802–3832 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Li, F. et al. Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries. J. Alloys Compd. 577, 663–668 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Kränzlin, N. & Niederberger, M. Wet-chemical preparation of copper foam monoliths with tunable densities and complex macroscopic shapes. Adv. Mater. 25, 5599–5604 (2013).

    Article 

    Google Scholar
     

  • 28.

    Jézéquel, D., Guenot, J., Jouini, N. & Fiévet, F. Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. 10, 77–83 (1995).

    Article 
    ADS 

    Google Scholar
     

  • 29.

    Pelliccione, C. J., Ding, Y., Timofeeva, E. V. & Segre, C. U. In situ XAFS study of the capacity fading mechanisms in ZnO anodes for lithium-ion batteries. J. Electrochem. Soc. 162, A1935–A1939 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Wang, H., Pan, Q., Cheng, Y., Zhao, J. & Yin, G. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta https://doi.org/10.1016/j.electacta.2008.11.019 (2009).

    Article 

    Google Scholar
     

  • 31.

    Rehnlund, D. et al. Electrochemical fabrication and characterization of Cu/Cu2O multi-layered micro and nanorods in Li-ion batteries. Nanoscale 7, 13591–13604 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 32.

    David, L., Bhandavat, R., Barrera, U. & Singh, G. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat. Commun. 7, 10998 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 33.

    Gnanamuthu, R. & Lee, C. W. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries. Mater. Chem. Phys. 130, 831–834 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Zhang, C. Q. et al. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J. Electrochem. Soc. 154, A65 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Haag, J. M., Pattanaik, G. & Durstock, M. F. Nanostructured 3D electrode architectures for high-rate Li-ion batteries. Adv. Mater. 25, 3238–3243 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Wang, K. et al. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 23, 846–853 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Fu, K. et al. Aligned carbon nanotube-silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes. Adv. Mater. 25, 5109–5114 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Li, H. et al. Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries. Ionics (Kiel). 22, 1387–1393 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, 170–192 (2010).

    Article 

    Google Scholar
     

  • 40.

    Kränzlin, N., Ellenbroek, S., Durán-Martín, D. & Niederberger, M. Liquid-phase deposition of freestanding copper foils and supported copper thin films and their structuring into conducting line patterns. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201200428 (2012).

    Article 

    Google Scholar
     

  • 41.

    Parslow, A., Cardona, A. & Bryson-Richardson, R. J. Sample drift correction following 4D confocal time-lapse imaging. J. Vis. Exp. https://doi.org/10.3791/51086 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Cooper, S. J., Bertei, A., Finegan, D. P. & Brandon, N. P. Simulated impedance of diffusion in porous media. Electrochim. Acta 251, 681–689 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Cooper, S. J., Bertei, A., Shearing, P. R., Kilner, J. A. & Brandon, N. P. TauFactor: An open-source application for calculating tortuosity factors from tomographic data. SoftwareX 20, 20 (2016).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *