CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Spehn, E. M., Rudmann-Maurer, K., Körner, C. & Maselli, D. Mountain Biodiversity and Global Change. Global Mountain Biodiversity Assessment (2010).

  • 2.

    Regato P. & Salman R. Mediterranean Mountains in a Changing World: Guidelines for Developing Action Plans. IUCN (2008).

  • 3.

    Van Beusekom, A. E., González, G. & Rivera, M. M. Short-term precipitation and temperature trends along an elevation gradient in northeastern Puerto Rico. Earth Interact.19, 1–33 (2015).


    Google Scholar
     

  • 4.

    Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol.15, 513–514 (2000).


    Google Scholar
     

  • 5.

    Hodkinson, I. D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev.80, 489–513 (2005).

    PubMed 

    Google Scholar
     

  • 6.

    Arroyo, M. T. K., Primack, R. & Armesto, J. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot.69, 82–97 (1982).


    Google Scholar
     

  • 7.

    Kessler, M. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecol.149, 181–193 (2000).


    Google Scholar
     

  • 8.

    Yu, X. D., Lü, L., Luo, T. H. & Zhou, H. Z. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in Southwestern China. PLoS ONE8, e69177 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Kearns, C. A., Oliveras, D. M. & Lay, C. R. Monitoring the conservation status of bumblebee populations across an elevation gradient in the Front Range of Colorado. J. Insect Conserv.21, 65–74 (2017).


    Google Scholar
     

  • 10.

    Kumar, A. & O’Donnell, S. Elevation and forest clearing effects on foraging differ between surface–and subterranean–foraging army ants (Formicidae: Ecitoninae). J. Anim. Ecol.78, 91–97 (2009).

    PubMed 

    Google Scholar
     

  • 11.

    Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett.8, 224–239 (2005).


    Google Scholar
     

  • 12.

    Steffan-Dewenter, I. & Schiele, S. Do resources or natural enemies drive bee population dynamics in fragmented habitats?. Ecology89, 1375–1387 (2008).

    PubMed 

    Google Scholar
     

  • 13.

    Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology90, 2068–2076 (2009).

    PubMed 

    Google Scholar
     

  • 14.

    Kearns, C. A. Anthophilous fly distribution across an elevation gradient. Am. Midl. Nat.127, 172–182 (1992).


    Google Scholar
     

  • 15.

    Zoller, H., Lenzin, H. & Erhardt, A. Pollination and breeding system of Eritrichium nanum (Boraginaceae). Plant Syst. Evol.233, 1–14 (2002).


    Google Scholar
     

  • 16.

    Lefebvre, V., Villemant, C., Fontaine, C. & Daugeron, C. Altitudinal, temporal and trophic partitioning of flower-visitors in Alpine communities. Sci. Rep.8, 1–12 (2018).


    Google Scholar
     

  • 17.

    Benadi, G., Hovestadt, T., Poethke, H. J. & Blüthgen, N. Specialization and phenological synchrony of plant–pollinator interactions along an altitudinal gradient. J. Anim. Ecol.83, 639–650 (2014).

    PubMed 

    Google Scholar
     

  • 18.

    Totland, Ø. Pollination in alpine Norway: Flowering phenology, insect visitors, and visitation rates in two plant communities. Can. J. Bot.71, 1072–1079 (1993).


    Google Scholar
     

  • 19.

    Lázaro, A., Hegland, S. J. & Totland, Ø. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia157, 249–257 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 20.

    Inouye, D. W., Saavedra, F. & Lee-Yang, W. Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). Am. J. Bot.90, 905–910 (2003).

    PubMed 

    Google Scholar
     

  • 21.

    Schauber, E. M. et al. Masting by eighteen New Zealand plant species: The role of temperature as a synchronizing cue. Ecology83, 1214–1225 (2002).


    Google Scholar
     

  • 22.

    Kuhlmann, M. Diversity, distribution patterns and endemism of southern African bees (Hymenoptera: Apoidea). In African Biodiversity 167–172 (Springer, Boston, 2005).

  • 23.

    Ogilvie, J. E. et al. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol. Lett.20, 1507–1515 (2017).

    PubMed 

    Google Scholar
     

  • 24.

    Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett.19, 1247–1255 (2016).

    PubMed 

    Google Scholar
     

  • 25.

    Miller-Struttmann, N. E. et al. Functional mismatch in a bumble bee pollination mutualism under climate change. Science349, 1541–1544 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant-pollinator interactions?. Ecol. Lett.12, 184–195 (2009).

    PubMed 

    Google Scholar
     

  • 27.

    Hodgson, J. A. et al. Predicting insect phenology across space and time. Glob. Change Biol.17, 1289–1300 (2011).

    ADS 

    Google Scholar
     

  • 28.

    Fitter, A. H. & Fitter, R. S. R. Rapid changes in flowering time in British plants. Science296, 1689–1691 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr.15, 498–504 (2006).


    Google Scholar
     

  • 30.

    Waser, N. M. Food-supply and nest timing of broad-tailed hummingbirds in Rocky Mountains. Condor78, 133–135 (1976).


    Google Scholar
     

  • 31.

    Menzel, A. & Fabian, P. Growing season extended in Europe. Nature397, 659–659 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Miller-Rushing, A. J. & Primack, R. B. Global warming and flowering times in Thoreau’s Concord: A community perspective. Ecology89, 332–341 (2008).

    PubMed 

    Google Scholar
     

  • 33.

    Roy, D. B. & Sparks, T. H. Phenology of British butterflies and climate change. Glob. Change Biol.6, 407–416 (2000).

    ADS 

    Google Scholar
     

  • 34.

    Sparks, T. & Collinson, N. Review of Spring 2007, Nature’s Calendar project (2007).

  • 35.

    Stefanescu, C., Peñuelas, J. & Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Change Biol.9, 1494–1506 (2003).

    ADS 

    Google Scholar
     

  • 36.

    Dell, D., Sparks, T. H. & Dennis, R. L. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol.102, 161–167 (2005).


    Google Scholar
     

  • 37.

    Forister, M. L. & Shapiro, A. M. Climatic trends and advancing spring flight of butterflies in lowland California. Glob. Change Biol.9, 1130–1135 (2003).

    ADS 

    Google Scholar
     

  • 38.

    Doi, H. & Takahashi, M. Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Glob. Ecol. Biogeogr.17, 556–561 (2008).


    Google Scholar
     

  • 39.

    Chuine, I. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B.365, 3149–3160 (2010).


    Google Scholar
     

  • 40.

    Mohandass, D., Zhao, J. L., Xia, Y. M., Campbell, M. J. & Li, Q. J. Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas. J. Asia-Pac. Biodivers.8, 191–198 (2015).


    Google Scholar
     

  • 41.

    Johnson, M. R., Anhaeusser, C. R. & Thomas, R. J. The Geology of South Africa 691 (Geological Society of South Africa and Council for Geoscience, Pretoria, 2006).


    Google Scholar
     

  • 42.

    Bentz, B. J., Duncan, J. P. & Powell, J. A. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate. Forestry89, 271–283 (2016).


    Google Scholar
     

  • 43.

    Wardhaugh, C. W., Stone, M. J. & Stork, N. E. Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics. Sci. Rep.8, 1–12 (2018).

    CAS 

    Google Scholar
     

  • 44.

    Mayer, C., Soka, G. & Picker, M. The importance of monkey beetle (Scarabaeidae: Hopliini) pollination for Aizoaceae and Asteraceae in grazed and ungrazed areas at Paulshoek, Succulent Karoo, South Africa. J. Insect Conserv.10, 323 (2006).


    Google Scholar
     

  • 45.

    Van Kleunen, M., Nänni, I., Donaldson, J. S. & Manning, J. C. The role of beetle marks and flower colour on visitation by monkey beetles (Hopliini) in the greater cape floral region, South Africa. Ann. Bot.100, 1483–1489 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kehinde, T. & Samways, M. J. Effects of vineyard management on biotic homogenization of insect–flower interaction networks in the Cape Floristic Region biodiversity hotspot. J. Insect Conserv.18, 469–477 (2014).


    Google Scholar
     

  • 47.

    McCabe, L. M., Colella, E., Chesshire, P., Smith, D. & Cobb, N. S. The transition from bee-to-fly dominated communities with increasing elevation and greater forest canopy cover. PLoS ONE14, e0217198 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Adedoja, O. A., Kehinde, T. & Samways, M. J. Insect–flower interaction networks vary among endemic pollinator taxa over an elevation gradient. PLoS ONE13, e0207453 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Hoiss, B., Krauss, J., Potts, S. G., Roberts, S. & Steffan-Dewenter, I. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc. R. Soc. B. Biol. Sci.279, 4447–4456 (2012).


    Google Scholar
     

  • 50.

    Jervis, M. A. & Kidd, N. A. Host-feeding strategies in hymenopteran parasitoids. Biol. Rev.61, 395–434 (1986).


    Google Scholar
     

  • 51.

    Danieli-Silva, A. et al. Do pollination syndromes cause modularity and predict interactions in a pollination network in tropical high-altitude grasslands?. Oikos121, 35–43 (2012).


    Google Scholar
     

  • 52.

    Goldblatt, P., Bernhardt, P. & Manning, J. C. Pollination of petaloid geophytes by monkey beetles (Scarabaeidae: Rutelinae: Hopliini) in southern Africa. Missouri Bot. Gard.85, 215–230 (1998).


    Google Scholar
     

  • 53.

    Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl. Acad. Sci. USA110, 13434–13439 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    barVisser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B. Biol. Sci.272, 2561–2569 (2005).


    Google Scholar
     

  • 55.

    Gordo, O. & Sanz, J. J. Phenology and climate change: A long-term study in a Mediterranean locality. Oecologia146, 484–495 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • 56.

    Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology94, 2311–2320 (2013).

    PubMed 

    Google Scholar
     

  • 57.

    Olliff-Yang, R. L. & Mesler, M. R. The potential for phenological mismatch between a perennial herb and its ground-nesting bee pollinator. AoB Plants10, ply040 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. PNAS108, 20645–20649 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol.13, 1860–1872 (2007).

    ADS 

    Google Scholar
     

  • 60.

    Agenbag, L., Elser, K. J., Midgley, G. F. & Boucher, C. Diversity and species turnover on an altitudinal gradient in Western Cape, South Africa: Baseline data for monitoring range shifts in response to climate change. Bothalia38, a287 (2008).


    Google Scholar
     

  • 61.

    Junker, R. R. & Larue-Kontić, A. A. Elevation predicts the functional composition of alpine plant communities based on vegetative traits, but not based on floral traits. Alp. Bot.128, 13–22 (2018).


    Google Scholar
     

  • 62.

    Mucina, L. & Rutherford, M. C. The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute: Pretoria, South Africa. Memoirs of the Botanica Survey of South Africa (Steliza, 2006).

  • 63.

    Eardley, C., Kuhlmann, M. & Pauly, A. The Bee Genera and Subgenera of sub-Saharan Africa 145 (Belgian Development Cooperation, Brussels, 2010).


    Google Scholar
     

  • 64.

    Gess, S. K. & Gess, F. W. Wasps and Bees in Southern Africa 320 (South African National Biodiversity Institute, Pretoria, 2014).


    Google Scholar
     

  • 65.

    Scholtz, C. H. & Holm, E. Insects of Southern Africa (Butterworths, London, 1985).


    Google Scholar
     

  • 66.

    Dicks, L. V., Corbet, S. A. & Pywell, R. F. Compartmentalization in plant–insect flower visitor webs. J. Anim. Ecol.71, 32–43 (2002).


    Google Scholar
     

  • 67.

    Oksanen, J., Kindt, R., Legendre, P. & O’Hara, R. B. vegan: Community ecology package. R package version 1.8-3 (2006).

  • 68.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).


    Google Scholar
     

  • 69.

    Clarke, K. R., & Gorley, R. N. PRIMER v6: User Manual/Tutorial. Plymouth, UK: Primer-E (2006).


    Google Scholar
     

  • 70.

    Anderson, M., Gorley, R., & Clarke, K. P. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. Plymouth, UK: Primer-E (2008).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *