CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, et al. Forest carbon sinks in the Northern Hemisphere. Ecol Appl. 2002;12:891–9.


    Google Scholar
     

  • 2.

    Anderson J. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl. 1991;1:326–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Turetsky MR, Bond‐Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, et al. The resilience and functional role of moss in boreal and arctic ecosystems. N Phytol. 2012;196:49–67.

    CAS 

    Google Scholar
     

  • 4.

    DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science. 2008;320:1181.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Nilsson M-C, Wardle DA. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ. 2005;3:421–8.


    Google Scholar
     

  • 6.

    Rousk K, Jones D, DeLuca T. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front Microbiol. 2013;4:150.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Carleton T, Read D. Ectomycorrhizas and nutrient transfer in conifer–feather moss ecosystems. Can J Bot. 1991;69:778–85.


    Google Scholar
     

  • 8.

    Gundale MJ, Nilsson M, Bansal S, Jäderlund A. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. N Phytol. 2012;194:453–63.

    CAS 

    Google Scholar
     

  • 9.

    Gundale MJ, Wardle DA, Nilsson M-C. The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol Lett. 2012;8:805–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Jackson BG, Martin P, Nilsson M-C, Wardle DA. Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos. 2011;120:570–81.


    Google Scholar
     

  • 11.

    Jean M-E, Cassar N, Setzer C, Bellenger J-P. Short-term N2 fixation kinetics in a moss-associated cyanobacteria. Environ Sci Technol. 2012;46:8667–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Sorensen PL, Lett S, Michelsen A. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecol. 2012;213:695–706.


    Google Scholar
     

  • 13.

    Warshan D, Bay G, Nahar N, Wardle DA, Nilsson MC, Rasmussen U. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. ISME J. 2016;10:2198–208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Rai AN, Soderback E, Bergman B. Tansley review No. 116 cyanobacterium–plant symbioses. N Phytol. 2000;147:449–81.

    CAS 

    Google Scholar
     

  • 15.

    Meeks JC. Physiological adaptations in nitrogen-fixing Nostoc–plant symbiotic associations. In: Pawlowski K, editor. Prokaryotic symbionts in plants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 181–205.


    Google Scholar
     

  • 16.

    Steinberg NA, Meeks JC. Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol. 1991;173:7324–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, et al. Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol. 2010;154:1381–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. N Phytol. 2013;200:54–60.

    CAS 

    Google Scholar
     

  • 19.

    Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. 2018;35:1160–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim S-Y, Shapiro N, et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME J. 2017;11:2821–33.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Douglas AE. The symbiotic habit. Princeton, NJ: Princeton University Press; 2010.

  • 22.

    Bronstein JL. Mutualism. USA: Oxford, UK: Oxford University Press; 2015.


    Google Scholar
     

  • 23.

    Holland JN, Ness JH, Boyle A, Bronstein JL. Mutualisms as consumer-resource interactions. Ecology of predator–prey interactions. Oxford, UK: Oxford University Press; 2005. p. 17–33.

  • 24.

    van der Ploeg JR, Eichhorn E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol. 2001;176:1–8.

    PubMed 

    Google Scholar
     

  • 25.

    Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, et al. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. Mol Plant Microbe Interact. 2011;24:451–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Pederson ERA, Warshan D, Rasmussen U. Genome sequencing of Pleurozium schreberi: the assembled and annotated draft genome of a pleurocarpous feather moss. G3: Genes, Genomes, Genetics. 2019;9:2791–7.

    CAS 

    Google Scholar
     

  • 28.

    Hardy RW, Holsten R, Jackson E, Burns R. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 1968;43:1185–207.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Khayatan B, Bains DK, Cheng MH, Cho YW, Huynh J, Kim R, et al. A putative O-linked β-N-acetylglucosamine transferase is essential for hormogonium development and motility in the filamentous cyanobacterium Nostoc punctiforme. J Bacteriol. 2017;199:e00075-17.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Falkowski PG, Raven JA. Aquatic photosynthesis. Princeton, NJ: Princeton University Press; 2013.

  • 31.

    Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PH, et al. The contamination of commercial 15N2 gas stocks with 15N–labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PloS ONE. 2014;9:e110335.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Ndegwa PM, Vaddella VK, Hristov AN, Joo HS. Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps. J Environ Qual. 2009;38:647–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Microbial systems biology. Totowa, NJ: Humana Press; 2012. p. 375–408.

  • 34.

    Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007;1:354–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K, Hertweck C, et al. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme. Proc Natl Acad Sci USA. 2015;112:1862–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact. 2010;23:784–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66:94–121.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Wong FC, Meeks JC. Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiology. 2002;148:315–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Hill DJ. The control of the cell cycle in microbial symbionts. N Phytol. 1989;112:175–84.


    Google Scholar
     

  • 40.

    Adams DG, Duggan PS. Signalling in cyanobacteria–plant symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 93–121.

  • 41.

    Hashidoko Y, Nishizuka H, Tanaka M, Murata K, Murai Y, Hashimoto M. Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae). Sci Rep. 2019;9:4751.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Calderwood A, Kopriva S. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide. 2014;41:72–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Koppenol WH, Bounds PL. Signaling by sulfur-containing molecules. Quantitative aspects. Arch Biochem Biophys. 2017;617:3–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Miller JB, Oldroyd GE. The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 1–30.

  • 45.

    Duhamel S, Van Wambeke F, Lefevre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol. 2018;20:2743–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Kaplan D, Peters GA. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis. 1988;6:53–68.

    CAS 

    Google Scholar
     

  • 48.

    Ray TB, Mayne BC, Toia RE, Peters GA. Azolla-Anabaena relationship: VIII. Photosynthetic characterization of the association and individual partners. Plant Physiol. 1979;64:791–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, et al. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio. 2015;6:e02109-14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, et al. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 2008;27:1299–308.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP. Molybdenum and phosphorus limitation of moss‐associated nitrogen fixation in boreal ecosystems. N Phytol. 2017;214:97–107.

    CAS 

    Google Scholar
     

  • 53.

    Solheim B, Zielke M. Associations between cyanobacteria and mosses. In: Rai AN, Bergman B, Rasmussen U, editors. Cyanobacteria in symbiosis. Dordrecht: Springer Netherlands; 2002. p. 137–52.


    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *