CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Badalyan SM, Barkhudaryan A, Rapior S. Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application. In: Agrawal DC, Dhanasekaran M, editors. Medicinal mushrooms: recent progress in research and development. Singapore: Springer Nature Pte Ltd; 2019. p. 1–70.

  • 2.

    Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez, editors. Edible and medicinal mushrooms: technology and applications. Singapore: John Wiley & Sons Ltd; 2017. p. 5–13.

  • 3.

    Raut JK. Current status, challenges and prospects of mushroom industry in Nepal. Int J Agric Econ. 2019;4:154–60.


    Google Scholar
     

  • 4.

    Ma G, Yang W, Zhao L, Pei F, Fang D, Hu Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Wellness. 2018;7:125–33.


    Google Scholar
     

  • 5.

    Wasser SP. Shiitake (Lentinus edodes). In: Coates PM, Blackman MR, Cragg GM Levine M, Moss J, White JD, editors. Encyclopedia of dietary supplements. NY: Marcel Dekker; 2005. p. 653–64.

  • 6.

    Tokuyou Rinsanbutsu Seisan Toukei Chousa. e-Stat portal site of official statistics of Japan, website [Internet] (In Japanese). [cited 2020 May 20]. https://www.e-stat.go.jp/

  • 7.

    Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120:449–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Bito T, Teng F, Ohishi N, Takenaka S, Miyamoto E, Sakuno E, et al. Characterization of vitamin B12 compounds in the fruiting bodies of shiitake mushroom (Lentinula edodes) and bed logs after fruiting of the mushroom. Mycoscience. 2014;55:462–8.

    CAS 

    Google Scholar
     

  • 9.

    Jong SC, Birmingham JM. Medicinal and therapeutic value of the shiitake mushroom. In: Neidleman S, Laskin A, editors. Advances in applied microbiology, volume 39. USA: Academic Press, Inc; 1993. p. 153–84.

  • 10.

    Finimundy TC, Dillon AJP, Henriques JAP, Ely MR. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr Sci. 2014;5:1095–105.


    Google Scholar
     

  • 11.

    Komemushi S, Yamamoto Y, Fujita T. Antimicrobial substance produced by Lentinus edodes. J Antibact Antifung Agents. 1995;23:81–6. (in Japanese)


    Google Scholar
     

  • 12.

    Komemushi S, Yamamoto Y, Fujita T. Purification and identification of antimicrobial substances produced by Lentinus edodes. J Antibact Antifung Agents. 1996;24:21–5. (in Japanese)

    CAS 

    Google Scholar
     

  • 13.

    Bew RE, Chapman JR, Jones SRH, Lowe BE, Lowe G. Natural acetylenes. Part XVIII. Some allenic polyacetylenes from basidiomycetes. J Chem Soc C. 1966; 129–35.

  • 14.

    Ito S, (editors.) Mycological Flora of Japan. Vol. II. Japan: Tokyo Yokendo Ltd; 1959. (in Japanese)

  • 15.

    Ito S, Imai S. On the taxonomy of shii-take and matsu-take. Bot Mag Tokyo. 1925;39:319–29.


    Google Scholar
     

  • 16.

    Shiio T, Suzuki K, Murai A, Maeyashiki I, Fukuda A, Okumura S. A method for producing antibiotic. Japan Kokai Tokkyo Koho, S48-35085, May 23rd, 1973. (in Japanese)

  • 17.

    Tokimoto K, Fujita T, Takeda Y, Takaishi Y. Increased or induced formation of antifungal substances in culture of Lentinus edodes by the attack of Trichoderma spp. Proc Jpn Acad. 1987;63:277–80.

    CAS 

    Google Scholar
     

  • 18.

    Tokimoto K, Komatsu M. Selection and breeding of shiitake strains resistant to Trichoderma spp. Can J Bot. 1995;73(S1):962–6.


    Google Scholar
     

  • 19.

    Higham CA, Jones ERH, Keeping JW, Thaller V. Natural acetylenes. Part XLV. Polyacetylenes from cultures of the fungus Collybia peronata (bolt. ex fr.) kummer. J Chem Soc, Perkin Trans. 1974;1:1991–4.


    Google Scholar
     

  • 20.

    Herrmann H. Cortinellin, eine antibiotisch wirkasame Substanz aus Cortinellus shiitake. Naturwissenschaften. 1962;49:542.

    CAS 

    Google Scholar
     

  • 21.

    Dembitsky VM, Maoka T. Allenic and cumulenic lipids. Prog Lipid Res. 2007;46:328–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Kavanagh F, Hervey A, Robbins WJ. Antibiotic substances from basidiomycetes V. Poria corticola, Poria tenuis and an unidentified Basidiomycete. Proc Natl Acad Sci USA. 1950;36:1–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Bew RE, Cambie RC, Jones ERH, Lowe G. Natural acetylenes. Part XIX. Metabolites from some Poria species. J Chem Soc C. 1966:135–8

  • 24.

    Cambie RC, Hirschberg A, Jones ERH, Lowe G 783. Chemistry of the higher fungi. Part XVI. Polyacetylenic metabolites from Aleurodiscus roseus. J Chem Soc. 1963: 4120–30

  • 25.

    Morita K, Kobayashi S. Isolation, structure, and synthesis of lenthionine and its analogs. Chem Pharm Bull. 1967;15:988–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Kumagai H. Health food for preventing or improving thrombosis and medicinal compositionfor preventing or treating thrombosis. WO2005034974A1, April 21st, 2005. (in Japanese)

  • 27.

    Kumagai H, Akao M, Masuda H. Hepatopathy inhibitor. Japan Kokai Tokkyo Koho, JP2013103900A, May 30th, 2013. (in Japanese)

  • 28.

    Chen CC, Ho CT. Identification of sulfurous compounds of shiitake mushroom (Lentinus edodes Sing.). J Agric Food Chem. 1988;34:830–3.


    Google Scholar
     

  • 29.

    Chen J, Wei SL, Gao K. Chemical constituents and antibacterial activities of compounds from Lentinus edodes. Chem Nat Compd. 2015;51:592–4.

    CAS 

    Google Scholar
     

  • 30.

    Isaka M, Chinthanom P, Rachtawee P, Choowong W, Choeyklin R, Thummarukcharoen T. Lanostane triterpenoids from cultivated fruiting bodies of the wood-rot basidiomycete Ganoderma casuarinicola. Phytochemistry. 2020;170:112225.

    PubMed 

    Google Scholar
     

  • 31.

    Xu J, Hu Y, Qu W, Chen M, Zhou L, Bi Q, et al. Cytotoxic and neuroprotective activities of constituents from Alternaria alternate, a fungal endophyte of Psidium littorale. Bioorg Chem. 2019;90:103046.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Ohnuma N, Amemiya K, Kakuda R, Yaoita Y, Machida K, Kikuchi M. Sterol constituents from two edible mushrooms, Lentinula edodes and Tricholoma matsutake. Chem Pharm Bull. 2000;48:749–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Ishizuka T, Yaoita Y, Kikuchi M. Sterol constituents from the fruit bodies of Grifola frondosa (Fr.) S. F. Gray. Chem Pharm Bull. 1997;45:1756–60.

    CAS 

    Google Scholar
     

  • 34.

    Yaoita Y, Amemiya K, Ohnuma H, Furumura K, Masaki A, Matsuki T, et al. Sterol constituents from five edible mushrooms. Chem Pharm Bull. 1998;46:944–50.

    CAS 

    Google Scholar
     

  • 35.

    Yaoita Y, Endo M, Tani Y, Machida K, Amemiya K, Furumura K, et al. Sterol constituents from seven mushrooms. Chem Pharm Bull. 1999;47:847–51.

    CAS 

    Google Scholar
     

  • 36.

    Gao LW, Li WY, Zhao YL, Wang JW. The cultivation, bioactive components and pharmacological effects of Armillaria mellea. Afr J Biotechnol. 2009;8:7383–90.

    CAS 

    Google Scholar
     

  • 37.

    Lo Y, Lin S, Ulziijargal E, Chen S, Chien R, Tzou Y, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mush. 2012;14:357–63.

    CAS 

    Google Scholar
     

  • 38.

    Lin S, Chen Y, Yu H, Barseghyan GS, Asatiani MD, Wasser SP, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mush. 2013;15:315–23.

    CAS 

    Google Scholar
     

  • 39.

    Kała K, Kryczyk-Poprawa A, Rzewińska A, Muszyńska B. Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. Eur Food Res Technol. 2020;246:713–22.


    Google Scholar
     

  • 40.

    Chen SY, Ho KJ, Hsieh YJ, Wang LT, Mau JL. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT-Food Sci Technol. 2012;47:274–8.

    CAS 

    Google Scholar
     

  • 41.

    Chibata I, Okumura K, Takeyama S, Kotera K. Lentinacin: a new hypocholesterolemic substance in Lentinus edodes. Experientia. 1969;25:1237–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Rokujo T, Kikuchi H, Tensho A, Tsukitani Y, Takenawa T, Yoshida K, et al. Lentysine: a new hypolipidemic agent from a mushroom. Life Sci. 1970;9:379–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Saito M, Yasumoto T, Kaneda T. Quantitative analysese of eritadenine in “Shii-ta-ke” mushroom and other edible fungi. Eiyo Shokuryo. 1975;28:503–13. (in Japanese)

    CAS 

    Google Scholar
     

  • 44.

    Huang Y, Komoto J, Takata Y, Powell DR, Gomi T, Ogawa H, et al. Inhibition of S-adenosylhomocysteine hydrolase by acyclic sugar adenosine analogue D-eritadenine. J Biol Chem. 2002;277:7477–82.

  • 45.

    Schanche JS, Schanche T, Ueland PM, Holy A, Votruba I. The effect of aliphatic adenine analogues on S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase in intact rat hepatocytes. Mol Pharm. 1984;26:553–8.

    CAS 

    Google Scholar
     

  • 46.

    Afrin S, Rakib MA, Kim BH, Kim JO, Ha YL. Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. J Agric Food Chem. 2016;64:2263–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Tang C, Hoo PC, Tan LT, Pusparajah P, Khan TM, Lee L, et al. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharm. 2016;7:Article 474.


    Google Scholar
     

  • 48.

    Ishikawa NK, Yamaji K, Tahara S, Fukushi Y, Takahashi K. Highly oxidized cuparene-type sesquiterpenes from a mycelial culture of Flammulina velutipes. Phytochemistry. 2000;54:777–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Ishikawa NK, Fukushi Y, Yamaji K, Tahara S, Takahashi K. Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes. J Nat Prod. 2001;64:932–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Tabuchi A, Fukushima-Sakuno E, Osaki-Oka K, Futamura Y, Motoyama T, Osada H, et al. Productivity and bioactivity of enokipodins A–D of Flammulina rossica and Flammulina velutipes. Biosci Biotechnol Biochem. 2020;84:876–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Wang Y, Bao L, Yang X, Li L, Li S, Gao H, et al. Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chem. 2012;132:1346–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Wang Y, Bao L, Yang X, Dai H, Guo H, Yao X, et al. Four new cuparene-type sesquiterpenes from Flammulina velutipes. Helv Chim Acta. 2012;95:261–7.

    CAS 

    Google Scholar
     

  • 53.

    Tao Q, Ma K, Yang Y, Wang K, Chen B, Huang Y, et al. Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem. 2016;81:9867–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Schüffler A, Wollinsky B, Anke T, Liermann JC, Opatz T. Isolactarane and sterpurane sesquiterpenoids from the Basidiomycete Phlebia uda. J Nat Prod. 2012;75:1405–8.

    PubMed 

    Google Scholar
     

  • 55.

    Wang Y, Bao L, Liu D, Yang X, Li S, Gao H, et al. Two new sesquiterpenes and six norsesquiterpenes from the solid culture of edible mushroom Flammulina velutipes. Tetrahedron. 2012;68:3012–8.

    CAS 

    Google Scholar
     

  • 56.

    Ayer WA, Saeedi-Ghomi MH. 1-Sterpurene-3,12,14-triol and 1-sterpurene, metabolites of silver-leaf disease fungus Stereum purpureum. Can J Chem. 1981;59:2536–8.

    CAS 

    Google Scholar
     

  • 57.

    Xu ZY, Wu ZA, Bi KS. A novel norsesquiterpene alkaloid from the mushroom-forming fungus Flammulina velutipes. Chin Chem Lett. 2013;24:57–8.


    Google Scholar
     

  • 58.

    Kashinath K, Jadhav PD, Reddy S. Total synthesis of an anticancer norsesquiterpene alkaloid isolated from the fungus Flammulina velutipes. Org Biomol Chem. 2014;12:4098–103.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Hirai Y, Ikeda M, Murayama T, Ohata T. New monoterpentriols from the fruiting body of Flammulina velutipes. Biosci Biotechnol Biochem. 1998;62:1364–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Pavel Kalač. Chapter 2 Proximate composition and nutrients. In: Pavel Kalač, editors. Edible Mushrooms: chemical composition and nutritional value. USA: Academic Press; 2016. p. 5–13.

  • 61.

    Grimm D, Wösten HAB. Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol. 2018;102:7795–803.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *