CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Fricke, R., Eschmeyer, W. N. & van der Laan, R. Eschmeyer’s catalog of fishes: genera, species, references (https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (Electronic version accessed 01 December 2019) (2019).

  • 2.

    Crampton, W. G. R. in Historical biogeography of neotropical freshwater fishes (eds J. S. Albert & R. E. Reis) 165–189 (University of California Press, California, 2011).

  • 3.

    Dagosta, F. C. P. & de Pinna, M. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. N. Y. 1–163, 2019. https://doi.org/10.1206/0003-0090.431.1.1 (2019).

    Article 

    Google Scholar
     

  • 4.

    Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish Biol. 89, 12–47. https://doi.org/10.1111/jfb.13016 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Albert, J. S. & Reis, R. E. Historical Biogeography of Neotropical Freshwater Fishes (University of California Press, Berkeley, 2011).


    Google Scholar
     

  • 6.

    Albert, J. S., Petry, P. & Reis, R. E. in Historical biogeography of neotropical freshwater fishes (eds J. S. Albert & R. E. Reis) 21–58 (University of California Press, California, 2011).

  • 7.

    Oberdorff, T. et al. Unexpected fish diversity gradients in the Amazon basin. Sci. Adv. 5, 8681. https://doi.org/10.1126/sciadv.aav8681 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Fernandes, C. C., Podos, J. & Lundberg, J. G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 305, 1960–1962. https://doi.org/10.1126/science.1101240 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Craig, J. M. et al. Using community phylogenetics to assess phylogenetic structure in the Fitzcarrald region of Western Amazonia. Neotrop. Ichthyol. 18, 1–16. https://doi.org/10.1590/1982-0224-2020-0004 (2020).

    Article 

    Google Scholar
     

  • 10.

    Willis, S. C., Winemiller, K. O. & Lopez-Fernandez, H. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142, 284–295. https://doi.org/10.1007/s00442-004-1723-z (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Val, A. L. & Almeida-Val, V. M. F. Fishes of the Amazon and their Environment. Physiological and Biochemical Aspect (Springer, Berlin, 1995).


    Google Scholar
     

  • 12.

    Van Nynatten, A. D. et al. To see or not to see: Molecular evolution of the rhodopsin visual pigment in neotropical electric fishes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 286, 20191182. https://doi.org/10.1098/rspb.2019.1182 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Rodriguez, M. A. & Lewis, W. M. Regulation and stability in fish assemblages of neotropical floodplain lakes. Oecologia 99, 166–180. https://doi.org/10.1007/BF00317098 (1994).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Etienne, R. S. & Olff, H. Confronting different models of community structure to species-abundance data: A Bayesian model comparison. Ecol. Lett. 8, 493–504. https://doi.org/10.1111/j.1461-0248.2005.00745.x (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Sioli, H. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin Vol. 56 Monographiae Biologicae (ed H. Sioli) 127–165 (Junk, 1984).

  • 16.

    Goulding, M., Carvalho, M. L. & Ferreira, E. G. Rio Negro, rich life in poor water: Amazonian diversity and foodchain ecology as seen through fish communities. (SPB Academic Publishing, 1988).

  • 17.

    Junk, W. J. et al. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31, 623–640. https://doi.org/10.1007/s13157-011-0190-7 (2011).

    Article 

    Google Scholar
     

  • 18.

    Ríos-Villamizar, E. A., Piedade, M. T. F., Da Costa, J. G., Adeney, J. M. & Junk, W. J. Chemistry of different Amazonian water types for river classification: a preliminary review. Water Soc 2(178), 17–28. https://doi.org/10.2495/13WS0021 (2014).

    Article 

    Google Scholar
     

  • 19.

    Gibbs, R. J. Water chemistry of the Amazon river. Geochim. Cosmochim. Acta 36, 1061–1066. https://doi.org/10.1016/0016-7037(72)90021-X (1972).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Dustan, P. Terrestrial limitation of Amazon river productivity: why the Amazon River is not green. Evol. Ecol. Res. 11, 421–432 (2009).


    Google Scholar
     

  • 21.

    Furch, K. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (ed H. Sioli) 168–199 (Dr W. Junk, 1984).

  • 22.

    Junk, W. J. & Furch, K. in Amazonia (eds G.T. Prance & T.E. Lovejoy) 3–17 (Pergamon/IUCN, 1985).

  • 23.

    Devol, A. H. & Hedges, J. I. in The biogeochemistry of the Amazon basin (eds M. E. McClain, R. L. Victoria, & J. E. Richey) 275–306 (Oxford University Press, 2001).

  • 24.

    Seyler, P. T. & Boaventura, G. R. in The biogeochemistry of the Amazon basin (eds M. E. McClain, R. L. Victoria, & J. E. Richey) 307–327 (Oxford University Press, 2001).

  • 25.

    Wallace, A. R. A narrative of travels on the Amazon and Rio Negro, with an account of the native tribes, and observations on the climate, geology and natural history of the Amazon valley. (Reeve and Co., 1853).

  • 26.

    Sioli, H. The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (Junk, Dordrecht, 1984).


    Google Scholar
     

  • 27.

    Melack, J. M. & Forsberg, B. R. in The biogeochemistry of the Amazon basin (eds M.E. McClain, R. L. Victoria, & J. E. Richey) 235–274 (Oxford University Press, 2001).

  • 28.

    Melack, J. M. & Hess, L. L. in Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management (eds W. J. Junk et al.) 43–59 (Springer, 2010).

  • 29.

    Galacatos, K., Stewart, D. J. & Ibarra, M. Fish community patterns of lagoons and associated tributaries in the Ecuadorian Amazon. Copeia 2, 875–894 (1996).

    Article 

    Google Scholar
     

  • 30.

    Henderson, P. A. & Crampton, W. G. R. A comparison of fish diversity and abundance between nutrient-rich and nutrient-poor lakes in the Upper Amazon. J. Trop. Ecol. 13, 175–198. https://doi.org/10.1017/S0266467400010403 (1997).

    Article 

    Google Scholar
     

  • 31.

    Saint-Paul, U. et al. Fish communities in central Amazonian white- and blackwater floodplains. Environ. Biol. Fishes 57, 235–250. https://doi.org/10.1023/A:1007699130333 (2000).

    Article 

    Google Scholar
     

  • 32.

    Winemiller, K. O., Lopez-Fernandez, H., Taphorn, D. C., Nico, L. G. & Duque, A. B. Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins. J. Biogeogr. 35, 1551–1563. https://doi.org/10.1111/j.1365-2699.2008.01917.x (2008).

    Article 

    Google Scholar
     

  • 33.

    Fisher, T. R. Plankton and primary production in aquatic systems of the Central Amazon basin. Comp. Biochem. Physiol. 62A, 31–38. https://doi.org/10.1016/0300-9629(79)90739-4 (1979).

    Article 

    Google Scholar
     

  • 34.

    Fittkau, E. J., Irmler, U., Junk, W. J., Reiss, F. & Schimdt, G. W. in Tropical ecological systems: trends in terrestrial and aquatic research (eds F.B. Golley & E. Medina) 284–311 (Springer, Berlin, 1975).

  • 35.

    Putz, R. & Junk, W. J. in The central Amazon floodplain: ecology of a pulsing system (ed W. J. Junk) 147–181 (Springer, Berlin, 1997).

  • 36.

    Rai, H. & Hill, G. E. in The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (ed H. Sioli) 311–335 (Dr. W. Junk Publishers, 1984).

  • 37.

    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters II. The limnology of a tropical floodplain lake in Central Amazonia (Lago do Castanho). Amazoniana 4, 139–203 (1973).


    Google Scholar
     

  • 38.

    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters III. Primary productivity of phytoplankton in a tropical floodplain lake of Central Amazonia, Lago do Castanho, Amazonas, Brazil. Amazoniana 4, 379–404 (1973).


    Google Scholar
     

  • 39.

    Schmidt, G. W. Studies on the primary productivity of phytoplankton in the three types of Amazonian waters I. Introduction. Amazoniana 4, 135–138 (1973).


    Google Scholar
     

  • 40.

    Schmidt, G. W. Primary production of phytoplankton in the three types of Amazonian waters. IV. On the primary productivity of phytoplankton in a bay of the lower Rio Negro (Amazonas, Brazil). Amazoniana 5, 517–528 (1976).


    Google Scholar
     

  • 41.

    Putz, R. Periphyton communities in Amazonian black- and whitewater habitats: Community structure, biomass and productivity. Aquat. Sci. 59, 74–93 (1997).

    Article 

    Google Scholar
     

  • 42.

    Moreira-Turcq, P., Seyler, P., Guyot, J. L. & Etcheber, H. Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol. Process. 17, 1329–1344. https://doi.org/10.1002/hyp.1287 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Wissmar, R. C., Richey, J. E., Stallard, R. F. & Edmond, J. M. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil, May–June 1977. Ecology 62, 1622–1633. https://doi.org/10.2307/1941517 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Costa, M. P. F., Novo, E. M. L. M. & Telmer, K. H. Spatial and temporal variability of light attenuation in large rivers of the Amazon. Hydrobiologia 702, 171–190. https://doi.org/10.1007/s10750-012-1319-2 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Engle, D. L., Melack, J. M., Doyle, R. D. & Fisher, T. R. High rates of net primary production and turnover of floating grasses on the Amazon floodplain: Implications for aquatic respiration and regional CO2 flux. Glob. Change Biol. 14, 369–381. https://doi.org/10.1111/j.1365-2486.2007.01481.x (2008).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Junk, W. J. Investigations on the ecology and production-biology of the “floating meadows” (Paspalo-Echinochloetum) on the middle Amazon Part I: The floating vegetation and its ecology. Amazoniana 2, 449–495 (1970).


    Google Scholar
     

  • 47.

    Junk, W. J. & Piedade, M. T. F. in The Central Amazon floodplain. Ecological Studies (ed W. J. Junk) 147–185 (Springer, Berlin, 1997).

  • 48.

    Junk, W. J. & Piedade, M. T. F. in Amazonian floodplain forests: Ecophysiology, biodiversity and sutainable management (eds W. J. Junk et al.) 3–25 (Springer, Berlin, 2010).

  • 49.

    Engle, D. L. & Melack, J. M. Floating meadow epiphyton—biological and chemical features of epiphytic material in an Amazon floodplain lake. Freshwat. Biol. 22, 479–494. https://doi.org/10.1111/j.1365-2427.1989.tb01120.x (1989).

    Article 

    Google Scholar
     

  • 50.

    Piedade, M. T. F., Junk, W., D’Ângelo, S. A., Wittmann, F. & Schöngart, J. Aquatic herbaceous plants of the Amazon floodplains: State of the art and research needed. Acta Limnol. Brasil. 22, 165–178. https://doi.org/10.4322/actalb.02202006 (2010).

    Article 

    Google Scholar
     

  • 51.

    Goulding, M. The fishes and the forest (University of California Press, California, 1980).


    Google Scholar
     

  • 52.

    Worbes, M. in The Central Amazon floodplain. Ecological Studies (ed W. J. Junk) 223–260 (Springer, Berlin, 1997).

  • 53.

    Adis, J., Erwin, T. L., Battirola, L. D. & Ketelhut, S. in Amazonian floodplain forests: Ecophysiology, biodiversity and sutainable management (eds W. J. Junk et al.) 313–325 (Springer, Berlin, 2010).

  • 54.

    Prance, G. T. Notes on the vegetation of Amazonia. III. The terminology of Amazonian forest types subject to inundation. Brittonia 31, 26–38. https://doi.org/10.2307/2806669 (1979).

    Article 

    Google Scholar
     

  • 55.

    Junk, W. J. & Piedade, M. T. F. Biomass and primary-production of herbaceous plant communities in the Amazon floodplain. Hydrobiology 263, 155–162. https://doi.org/10.1007/BF00006266 (1993).

    Article 

    Google Scholar
     

  • 56.

    Junk, W. J., Wittmann, F., Schöngart, J. & Piedade, M. T. F. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol. Manag. 23, 677–693. https://doi.org/10.1007/s11273-015-9412-8 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Junk, W. J., Teresa, T., Piedade, F., Schöngart, J. & Wittmann, F. A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecol. Manag. 20, 461–475. https://doi.org/10.1007/s11273-012-9268-0 (2012).

    Article 

    Google Scholar
     

  • 58.

    Rosenzweig, M. L. Species diversity in space and time (Cambridge University Press, Cambridge, 1995).


    Google Scholar
     

  • 59.

    Evans, K. L., Warren, P. H. & Gaston, K. J. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. 79, 1–25. https://doi.org/10.1017/S1464793104006517 (2005).

    Article 

    Google Scholar
     

  • 60.

    Fraser, R. H. & Currie, D. J. The species richness-energy hypothesis in a system where historical factors are thought to prevail: Coral reefs. Am. Nat. 148, 138–159. https://doi.org/10.1086/285915 (1996).

    Article 

    Google Scholar
     

  • 61.

    Kramer, D. L., Lindsey, C. C., Moodie, G. E. E. & Stevens, E. D. The fishes and the aquatic environment of the Central Amazonian basin, with particular reference to respiratory patterns. Can. J. Zool. 56, 717–729. https://doi.org/10.1139/z78-101 (1978).

    Article 

    Google Scholar
     

  • 62.

    Crampton, W. G. R. Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. J. Fish Biol. 53, 307–330. https://doi.org/10.1111/j.1095-8649.1998.tb01034.x (1998).

    Article 

    Google Scholar
     

  • 63.

    Gonzalez, R. J., Wilson, R. W., Wood, C. M., Patrick, M. L. & Val, A. L. Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol. Biochem. Zool. 75, 37–42. https://doi.org/10.1086/339216 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Gonzalez, R. J., Wilson, R. W. & Wood, C. M. in The Physiology of Tropical Fishes (eds A. L. Val, V.M.F. Almeida-Val, & D.J. Randall) 397–442 (Academic Press, 2006).

  • 65.

    Van Nynatten, A. D., Bloom, D. D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Crampton, W. G. R. Electroreception, electrogenesis and signal evolution. J. Fish Biol. 95, 92–134. https://doi.org/10.1111/jfb.13922 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 67.

    Cooke, G. M., Landguth, E. L. & Beheregaray, L. B. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone. Evolution 87, 1–14. https://doi.org/10.1111/evo.12410 (2014).

    Article 

    Google Scholar
     

  • 68.

    Gonzalez, R. J. et al. Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon. Physiol. Zool. 71, 15–22. https://doi.org/10.1086/515893 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 69.

    Duncan, W. P., Costa, O. T. F. & Fernandes, M. N. Ionic regulation and Na+–K+-ATPase activity in gills and kidney of the freshwater stingray Paratrygon aiereba living in white and blackwaters in the Amazon Basin. J. Fish Biol. 74, 956–960. https://doi.org/10.1111/j.1095-8649.2008.02156.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 70.

    Correa, S. B., Crampton, W. G. R., Chapman, L. J. & Albert, J. S. A comparison of flooded forest and floating meadow fish assemblages in an upper Amazon floodplain. J. Fish Biol. 72, 629–644. https://doi.org/10.1111/j.1095-8649.2007.01752.x (2008).

    Article 

    Google Scholar
     

  • 71.

    Fernandes, C. C. Lateral migration of fishes in Amazon floodplains. Ecol. Freshwat. Fish 6, 36–44. https://doi.org/10.1111/j.1600-0633.1997.tb00140.x (1997).

    Article 

    Google Scholar
     

  • 72.

    Sánchez-Botero, J. I. & Araujo-Lima, C. A. R. M. As macrófitas aquáticas como bercário para a ictiofauna da várzea do Rio Amazonas. Acta Amazon. 31, 437–447. https://doi.org/10.1590/1809-43922001313447 (2001).

    Article 

    Google Scholar
     

  • 73.

    Emmons, L. H. Geographic varition in densities and diversities of non-flying mammals in Amazonia. Biotropica 16, 210–222. https://doi.org/10.2307/2388054 (1984).

    Article 

    Google Scholar
     

  • 74.

    Pomara, L. Y., Ruokolainen, K., Tuomisto, H. & Young, K. R. Avian composition co-varies with floristic composition and soil nutrient concentration in Amazonian upland forests. Biotropica 44, 545–553. https://doi.org/10.1111/j.1744-7429.2011.00851.x (2012).

    Article 

    Google Scholar
     

  • 75.

    Crampton, W. G. R. in Fish life in special environments (eds P. Sebert, D. W. Onyango, & B. G. Kapoor) 283–339 (Science Publishers, 2007).

  • 76.

    Duarte, C., Magurran, A. E., Zuanon, J. & Deus, C. P. Trophic ecology of benthic fish assemblages in a lowland river in the Brazilian Amazon. Aquat. Ecol. 53, 707–718. https://doi.org/10.1007/s10452-019-09720-5 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Hugueny, B., Oberdorff, T. & Tedesco, P. A. Community ecology of river fishes: a large-scale perspective. Am. Fish. Soc. Symp. 73, 29–62 (2010).


    Google Scholar
     

  • 78.

    Guégan, J. F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384. https://doi.org/10.1038/34899 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 79.

    Dodson, S. I., Arnott, S. E. & Cottingham, K. L. The relationship in lake communities between primary productivity and species richness. Ecology 81, 2662–2679. https://doi.org/10.1890/0012-9658(2000) (2000).

    Article 

    Google Scholar
     

  • 80.

    Kay, R. F., Madden, R. H., Van Schaik, C. P. & Higdon, D. Primate species richness is determined by plant productivity: Implications for conservation. Proc. Natl. Acad. Sci. U.S.A. 94, 13023–13027. https://doi.org/10.1073/pnas.94.24.13023 (1997).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Pires, J. M. & Prance, G. T. in Amazonia (eds G.T. Prance & T.E. Lovejoy) 109–145 (Pergamom, 1985).

  • 82.

    Correa, S. B. & Winemiller, K. O. Terrestrial-aquatic trophic linkages support fish production in a tropical oligotrophic river. Oecologia 186, 1069–1078. https://doi.org/10.1007/s00442-018-4093-7 (2018).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 83.

    Araujo-Lima, C. A. R. M., Forsberg, B., Victoria, R. & Martinelli, L. Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258. https://doi.org/10.1126/science.234.4781.1256 (1986).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 84.

    Duncan, W. P. & Fernandes, M. N. Physicochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae). Pan-Am. J. Aquat. Sci. 5, 454–464 (2010).


    Google Scholar
     

  • 85.

    Wootton, T. J. & Power, M. E. Productivity, consumers, and the structure of a river food chain. Proc. Natl. Acad. Sci. USA 90, 1384–1387. https://doi.org/10.1073/pnas.90.4.1384 (1993).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 86.

    Prepas, E. E. Total dissolved solids as a predictor of lake biomass and productivity. Can. J. Fish. Aquat. Sci. 40, 92–95. https://doi.org/10.1139/f83-015 (1983).

    Article 

    Google Scholar
     

  • 87.

    Nixon, S. W. Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanol. Acta 2, 357–371 (1982).


    Google Scholar
     

  • 88.

    Arbeláez, F., Duivenvoorden, J. F. & Maldonado-Ocampo, J. A. Geological differentiation explains diversity and composition of fish communities in upland streams in the southern Amazon of Colombia. J. Trop. Ecol. 24, 505–515. https://doi.org/10.1017/S0266467408005294 (2008).

    Article 

    Google Scholar
     

  • 89.

    Pereira, M. J. R. et al. Structuring of Amazonian bat assemblages: the roles of flooding patterns and floodwater nutrient load. J. Anim. Ecol. 78, 1163–1171. https://doi.org/10.1111/j.1365-2656.2009.01591.x (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 90.

    Smith, N. J. H. A pesca no Rio Amazonas. (Instituto Nacional de Pesquisas da Amazônia, 1979).

  • 91.

    Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229. https://doi.org/10.1111/conl.12008 (2013).

    Article 

    Google Scholar
     

  • 92.

    van der Sleen, P. & Albert, J. S. Field guide to the fishes of the Amazon, Orinoco, and Guianas (Princeton University Press, Princeton, 2017).


    Google Scholar
     

  • 93.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2019).

  • 94.

    Oksanen, J. et al. The Vegan Package. Commun. Ecol. Pack. 10, 631–637 (2019).


    Google Scholar
     

  • 95.

    Ripley, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. MASS: Functions and datasets to support Venables and Ripley, “Modern Applied Statistics with S” (4th Edition, 2002). (CRAN, 2017).

  • 96.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar
     

  • 97.

    Lenth, R. V., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package emmeans: Estimated marginal means, aka least-squares means. Compr. R. Arch. Netw. 2019, 1–67 (2019).


    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *