CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Ludvigsen, M. et al. Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, 1–9 (2018).


    Google Scholar
     

  • 2.

    Duarte, C. et al. Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod. Environ. Pollut. 248, 565–573 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Ayalon, I., Barros Marangoni, L. F., Benichou, J. I. C., Avisar, D. & Levy, O. Red sea corals under artificial light pollution at night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Change Biol. 25, 4194–4207 (2019).

    ADS 

    Google Scholar
     

  • 4.

    Berge, J. et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 3, 102 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).


    Google Scholar
     

  • 6.

    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 10, e0118571 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M. & Johnsen, G. Quantifying the light sensitivity of Calanus spp. during the polar night: potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis?. Polar Biol. 38, 51–65 (2015).


    Google Scholar
     

  • 8.

    Last, K. S., Hobbs, L., Berge, J., Brierley, A. S. & Cottier, F. Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr. Biol. 26, 244–251 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Crisp, D. J. & Ritz, D. A. Responses of cirripede larvae to light. I. Experiments with white light. Mar. Biol. 23, 327–335 (1973).


    Google Scholar
     

  • 10.

    Naylor, E. Marine animal behaviour in relation to lunar phase. Earth. Moon. Planets 85–86, 291–302 (1999).

    ADS 

    Google Scholar
     

  • 11.

    Davies, T. W. & Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 24, 872–882 (2018).

    ADS 

    Google Scholar
     

  • 12.

    Bertoldi, G. Status of LED-Lighting World Market in 2017 (European Commission, Brussels, 2018).


    Google Scholar
     

  • 13.

    Tamir, R., Lerner, A., Haspel, C., Dubinsky, Z. & Iluz, D. The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat). Sci. Rep. 7, 42329 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Marshall, J., Carleton, K. L. & Cronin, T. Colour vision in marine organisms. Curr. Opin. Neurobiol. 34, 86–94 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Luijendijk, A., Hagenaars, G., Ranasinghe, R. & Baart, F. The state of the world’ s beaches. Sci. Rep. 8, 6641 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Davies, T. W., Coleman, M., Griffith, K. M. & Jenkins, S. R. Night-time lighting alters the composition of marine epifaunal communities. Biol. Lett. 11, 20150080 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Garratt, M. J., Jenkins, S. R. & Davies, T. W. Mapping the consequences of artificial light at night for intertidal ecosystems. Sci. Total Environ. 691, 760–768 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Bolton, D. et al. Coastal urban lighting has ecological consequences for multiple trophic levels under the sea. Sci. Total Environ. 576, 1–9 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Underwood, C. N., Davies, T. W. & Queirós, A. M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86, 781–789 (2017).

    PubMed 

    Google Scholar
     

  • 20.

    Becker, A., Whitfield, A. K., Cowley, P. D., Järnegren, J. & Næsje, T. F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 50, 43–50 (2013).


    Google Scholar
     

  • 21.

    Szekeres, P. et al. Does coastal light pollution alter the nocturnal behavior and blood physiology of juvenile bonefish (Albula vulpes)?. Bull. Mar. Sci. 93, 491–505 (2017).


    Google Scholar
     

  • 22.

    Kamrowski, R. L., Limpus, C., Moloney, J. & Hamann, M. Coastal light pollution and marine turtles: Assessing the magnitude of the problem. Endanger. Species Res. 19, 85–98 (2012).


    Google Scholar
     

  • 23.

    Witherington, B. E. & Bjorndal, K. A. Influences of artificial lighting on the seaward orientation of hatchling loggerhead turtles Caretta caretta. Biol. Conserv. 55, 139–149 (1991).


    Google Scholar
     

  • 24.

    Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).

    PubMed 

    Google Scholar
     

  • 25.

    Manríquez, P. H. et al. Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas. Sci. Total Environ. 661, 543–552 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 26.

    Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6, e17307 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Rebke, M. et al. Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions. Biol. Conserv. 233, 220–227 (2019).


    Google Scholar
     

  • 28.

    Torres, D., Tidau, S., Jenkins, S. & Davies, T. W. Artificial skyglow disrupts celestial migration at night. Curr Biol. 30, R696-R697 (2020).

  • 29.

    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, 1–26 (2016).


    Google Scholar
     

  • 30.

    Aubrecht, C. et al. A global inventory of coral reef stressors based on satellite observed nighttime lights. Geocarto Int. 23, 467–479 (2008).


    Google Scholar
     

  • 31.

    Smyth, T. et al. A broad spatio-temporal view of the Western English Channel observatory. J. Plankt. Res. Res. 32, 585–601 (2010).

    ADS 

    Google Scholar
     

  • 32.

    Longcore, T. et al. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. Part A Ecol. Integr. Physiol. 329, 511–521 (2018).


    Google Scholar
     

  • 33.

    Rivas, M. L., Santidrián Tomillo, P., Diéguez Uribeondo, J. & Marco, A. Leatherback hatchling sea-finding in response to artificial lighting: Interaction between wavelength and moonlight. J. Exp. Mar. Biol. Ecol. 463, 143–149 (2015).


    Google Scholar
     

  • 34.

    Duanmu, D. et al. Marine algae and land plants share conserved phytochrome signaling systems. Proc. Natl. Acad. Sci. U.S.A. 111, 15827–15832 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Mason, B. M. & Cohen, J. H. Long-wavelength photosensitivity in coral planula larvae. Biol. Bull. 222, 88–92 (2012).

    PubMed 

    Google Scholar
     

  • 36.

    Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. Stemming the tide of light pollution encroaching into marine protected areas. Conserv. Lett. 9, 164–171 (2016).


    Google Scholar
     

  • 37.

    Falchi, F. et al. Supplement to: The new world atlas of artificial night sky brightness. GFZ Data Serv. https://doi.org/10.5880/GFZ.1.4.2016.001 (2016).

    Article 

    Google Scholar
     

  • 38.

    Mobley, C. D. HYDROLIGHT 3.0 User’s Guide. (1995).

  • 39.

    Smith, R. C. & Baker, K. S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20, 177–184 (1981).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Mobley, C. D. Light and Water, Radiative Transfer in Natural Waters (Academic Press, Cambridge, 1994).


    Google Scholar
     

  • 41.

    Morel, A. & Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Ocean. 106, 7163–7180 (2001).

    ADS 

    Google Scholar
     

  • 42.

    Kowalczuk, P., Zablocka, M., Sagan, S. & Kulinski, K. Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanologia 52, 431–471 (2010).


    Google Scholar
     

  • 43.

    Smyth, T. J., Moore, G. F., Hirata, T. & Aiken, J. Semianalytical model for the derivation of ocean color inherent optical properties: Description, implementation, and performance assessment: erratum. Appl. Opt. 46, 429–430 (2007).

    ADS 

    Google Scholar
     

  • 44.

    Petzold, T. J. Volume scattering functions for selected natural waters (Scripps Institution of Oceanography, San Diego, 1972).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *