CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING



AbstractLong-span suspension bridges are typically designed against wind and earthquake loadings without considering blast loads because existing blast-resistant design guidelines for bridges are limited and in fact not detailed enough to fully explicate the consequences of a blast event. This study performed detailed dynamic analysis of a long-span suspension bridge to parametrically evaluate its structural redundancy under small to large blasts detonated at different locations. To accomplish this, the blast-structure interaction problem was solved by a simplified approach whereby the blast aspect was modeled as nodal loads by simulating the pressure contour area on the deck surface caused by the explosion; the structural aspect was modeled as a three-dimensional fishbone skeleton finite-element model. In particular, major attention was paid to the blast load effects on the main cable and hangers designed at safety factors of 2.2 and 2.5, respectively. This study concluded that the main cable and hangers show sufficient and insufficient structural redundancies, respectively under small to medium blasts, whereas a large blast was proven to be detrimental to both the main cable and hangers, which may further trigger progressive collapse of the entire suspension bridge.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *