CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Wall, D. H. et al. Soil Ecology And Ecosystem Services. p. 406 (Oxford University Press, 2012).

  • 2.

    Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).


    Google Scholar
     

  • 3.

    Baveye, P. C., Baveye, J. & Gowdy, J. Soil ‘Ecosystem’ services and natural capital: critical appraisal of research on uncertain ground. Front. Environ. Sci. Eng. China 4, 1–49 (2016).


    Google Scholar
     

  • 4.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Heemsbergen & Hal, V. Biodiversity effects on soil processes explained by interspecific functional dissimilarity biodiversity effects on soil processes explained by interspecific. Science 306, 8–10 (2004).


    Google Scholar
     

  • 6.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Risch, A. C. et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 9, 3684 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 201516684 (2015).


    Google Scholar
     

  • 11.

    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    PubMed 

    Google Scholar
     

  • 12.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Song, D. et al. Large-scale patterns of distribution and diversity of terrestrial nematodes. Appl. Soil Ecol. 114, 161–169 (2017).


    Google Scholar
     

  • 14.

    Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).

    PubMed 

    Google Scholar
     

  • 15.

    Pärtel, M., Bennett, J. A. & Zobel, M. Macroecology of biodiversity: disentangling local and regional effects. New Phytol. 211, 404–410 (2016).

    PubMed 

    Google Scholar
     

  • 16.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

  • 21.

    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    van der Plas, F. et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31–42 (2018).

    PubMed 

    Google Scholar
     

  • 24.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2, 1042–1043 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Wetzel, F. T. et al. Unlocking biodiversity data: prioritization and filling the gaps in biodiversity observation data in Europe. Biol. Conserv. 221, 78–85 (2018).


    Google Scholar
     

  • 27.

    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. Biol. Sci. 280, 20122649 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 50 (2019).

  • 29.

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).


    Google Scholar
     

  • 30.

    Paleari, S. Is the European Union protecting soil? A critical analysis of Community environmental policy and law. Land Use Policy 64, 163–173 (2017).


    Google Scholar
     

  • 31.

    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    PubMed 

    Google Scholar
     

  • 32.

    Costello, M. J., Michener, W. K., Gahegan, M., Zhang, Z.-Q. & Bourne, P. E. Biodiversity data should be published, cited, and peer reviewed. Trends Ecol. Evol. 28, 454–461 (2013).

    PubMed 

    Google Scholar
     

  • 33.

    Bingham, H. C., Doudin, M. & Weatherdon, L. V. The biodiversity informatics landscape: elements, connections and opportunities. 3, e14059 (2017).

  • 34.

    Gibb, H. et al. A global database of ant species abundances. Ecology 98, 883–884 (2017).

    PubMed 

    Google Scholar
     

  • 35.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu. Rev. Microbiol. 71, 711–730 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).


    Google Scholar
     

  • 38.

    Stewart, G. Meta-analysis in applied ecology. Biol. Lett. 6, 78–81 (2010).

    PubMed 

    Google Scholar
     

  • 39.

    Rillig, M. C. et al. Biodiversity research: data without theory—theory without data. Front. Ecol. Evol. 3, 20 (2015).

    ADS 

    Google Scholar
     

  • 40.

    Coleman, D. C., Callaham, M. A. & Crossley, D. A., Jr. Fundamentals of Soil Ecology. (Academic Press, 2017).

  • 41.

    Lavelle, P. & Spain, A. Soil Ecology. (Springer Science & Business Media, 2001).

  • 42.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).


    Google Scholar
     

  • 43.

    Phillips, H. R. P. et al. 2019. Global distribution of earthworm diversity. Science https://doi.org/10.1126/science.aax4851 (2019).

  • 44.

    van den Hoogen J., et al. Soil nematode abundance and functional group composition at a global scale. Nature https://doi.org/10.1038/s41586-019-1418-6 (2019).

  • 45.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed 

    Google Scholar
     

  • 46.

    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (JRC and the Global Soil Biodiversity Initiative, 2016).

  • 47.

    Guenard, B., Weiser, M. D. & Gomez, K. The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 24, 83–89 (2017).

  • 48.

    Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS ONE 5, e11567 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).

  • 50.

    Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2, 262–267 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Eisenhauer, N., Bowker, M. A., Grace, J. B. & Powell, J. R. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. Pedobiologia 58, 65–72 (2015).


    Google Scholar
     

  • 52.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    PubMed 

    Google Scholar
     

  • 54.

    Fraser, L. H. et al. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Borgman, C. L., Wallis, J. C. & Enyedy, N. Little science confronts the data deluge: habitat ecology, embedded sensor networks, and digital libraries. Int. J. Digit. Lib. 7, 17–30 (2007).


    Google Scholar
     

  • 57.

    Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).


    Google Scholar
     

  • 58.

    Pey, B. et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl. Ecol. 15, 194–206 (2014).


    Google Scholar
     

  • 59.

    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 60.

    Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • 61.

    Wheeler, Q. D., Raven, P. H. & Wilson, E. O. Taxonomy: impediment or expedient? Science 303, 285 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Delgado-Baquerizo, M. & Eldridge, D. J. Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems 22, 1–12 (2019).


    Google Scholar
     

  • 63.

    Hursh, A. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 23, 2090–2103 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 64.

    Wang, Q., Liu, S. & Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Chang. Biol. 24, 2841–2849 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 65.

    Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 161, 259–278 (2016).

    ADS 

    Google Scholar
     

  • 66.

    Delgado-baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 325, 320–325 (2018).

    ADS 

    Google Scholar
     

  • 67.

    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. (2018).

  • 68.

    Cowan, D. A. et al. Microbiomics of Namib Desert habitats. Extremophiles 24, 17–29 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Rutgers, M. et al. Mapping earthworm communities in Europe. Appl. Soil Ecol. 97, 98–111 (2016).


    Google Scholar
     

  • 70.

    Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99, 583–596 (2018).

    PubMed 

    Google Scholar
     

  • 71.

    Chen, S., Zou, J., Hu, Z., Chen, H. & Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agric. For. Meteorol. 198199, 335–346 (2014).

    ADS 

    Google Scholar
     

  • 72.

    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).


    Google Scholar
     

  • 73.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Cameron, E. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019)

  • 75.

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Menegotto, A. & Rangel, T. F. Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nat. Commun. 9, 4713 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Eisenhauer, N. et al. Priorities for research in soil ecology. Pedobiologia 63, 1–7 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 82.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 326–326 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Chang. Biol. 22, 2505–2515 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 84.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).


    Google Scholar
     

  • 85.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52 (2012).

    ADS 

    Google Scholar
     

  • 86.

    Kharin, V. V., Zwiers, F. W., Zhang, X. & Hegerl, G. C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20, 1419–1444 (2007).

    ADS 

    Google Scholar
     

  • 87.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L. & Fichefet, T. Long-term climate change: projections, commitments and irreversibility. Chapter 12 (eds T. Stocker et al) 1029–1136 (Cambridge University Press, 2013).

  • 90.

    Delgado-Baquerizo, M., Eldridge, D. J., Hamonts, K. & Singh, B. K. Ant colonies promote the diversity of soil microbial communities. ISME J. https://doi.org/10.1038/s41396-018-0335-2 (2019).

  • 91.

    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Thomson, S. A. et al. Taxonomy based on science is necessary for global conservation. PLoS Biol. 16, e2005075 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Drew, L. W. Are we losing the science of taxonomy? Bioscience 61, 942–946 (2011).


    Google Scholar
     

  • 94.

    Paknia, O., Sh., H. R. & Koch, A. Lack of well-maintained natural history collections and taxonomists in megadiverse developing countries hampers global biodiversity exploration. Organ. Divers. Evol. 15, 619–629 (2015).


    Google Scholar
     

  • 95.

    Prathapan, K. D. et al. When the cure kills-CBD limits biodiversity research. Science 360, 1405–1406 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Neumann, D. et al. Global biodiversity research tied up by juridical interpretations of access and benefit sharing. Org. Divers. Evol. 18, 1–12 (2017).


    Google Scholar
     

  • 97.

    Leimu, R. & Koricheva, J. What determines the citation frequency of ecological papers? Trends Ecol. Evol. 20, 28–32 (2005).

    PubMed 

    Google Scholar
     

  • 98.

    Hugerth, L. W. & Andersson, A. F. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol. 8, 1561 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Terrat, S. et al. Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition. Microb. Biotechnol. 8, 131–142 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Kõljalg, U., Larsson, K. H. & Abarenkov, K. UNITE: a database providing web‐based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166, 1063–1068 (2005).

  • 101.

    Mathieu, J., Caro, G. & Dupont, L. Methods for studying earthworm dispersal. Appl. Soil Ecol. 123, 339–344 (2018).


    Google Scholar
     

  • 102.

    Pauchard, N. Access and benefit sharing under the convention on biological diversity and its protocol: what can some numbers tell us about the effectiveness of the regulatory regime? Resources 6, 11 (2017).


    Google Scholar
     

  • 103.

    Saha, S., Saha, S. & Saha, S. K. Barriers in Bangladesh. Elife 7, e41926 (2018).

  • 104.

    Prathapan, K. D. & Rajan, P. D. Biodiversity access and benefit-sharing: weaving a rope of sand. Curr. Sci. 100, 290–293 (2011).


    Google Scholar
     

  • 105.

    van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 106.

    Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Makiola, A., et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7, 197 (2020).

  • 108.

    Maestre, F. T. & Eisenhauer, N. Recommendations for establishing global collaborative networks in soil ecology. Soil Organ. 91, 73–85 (2019).


    Google Scholar
     

  • 109.

    Phillips, H. R. P. et al. Red list of a black box. Nat. Ecol. Evol. 1, 0103 (2017).


    Google Scholar
     

  • 110.

    Davison, J. et al. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME J. https://doi.org/10.1038/s41396-018-0196-8 (2018).

  • 111.

    Overmann, J. Significance and future role of microbial resource centers. Syst. Appl. Microbiol. 38, 258–265 (2015).

    PubMed 

    Google Scholar
     

  • 112.

    Overmann, J. & Scholz, A. H. Microbiological research under the nagoya protocol: facts and fiction. Trends Microbiol. 25, 85–88 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Bockmann, F. A. et al. Brazil’s government attacks biodiversity. Science 360, 865 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Scbd-Unep. Nagoya Declaration on Biodiversity in Development Cooperation. 2 (UNEP, 2010).

  • 115.

    Perrings, C. et al. Ecosystem services for 2020. Science 330, 323–324 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Bond-Lamberty, B. & Thomson, A. A global database of soil respiration data. Biogeosci. Discuss. 7, 1321–1344 (2010).

    ADS 

    Google Scholar
     

  • 117.

    Bamforth, S. S. Interpreting soil ciliate biodiversity. Plant Soil 170, 159–164 (1995).

    CAS 

    Google Scholar
     

  • 118.

    Mathieu, J. EGrowth: a global database on intraspecific body growth variability in earthworm. Soil Biol. Biochem. 122, 71–80 (2018).

    CAS 

    Google Scholar
     

  • 119.

    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).

    PubMed 

    Google Scholar
     

  • 120.

    Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Chen, J., Yang, S. T., Li, H. W., Zhang, B. & Lv, J. R. Research on geographical environment unit division based on the method of natural breaks (Jenks). ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XL-4/W3, pp. 47–50 (2013).

  • 122.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Rousseeuw, P. J. & van Zomeren, B. C. Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 85, 633–639 (1990).


    Google Scholar
     

  • 124.

    Jackson, D. A. & Chen, Y. Robust principal component analysis and outlier detection with ecological data. Environmetrics 15, 129–139 (2004).


    Google Scholar
     

  • 125.

    Mallavan B. P., Minasny B., McBratney A. B., in Digital Soil Mapping. pp. 137–150 (Springer, Dordrecht, 2010).

  • 126.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    PubMed 

    Google Scholar
     

  • 127.

    Hengl, T. et al. SoilGrids1km–global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).


    Google Scholar
     

  • 129.

    Karger, D. N. et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data 4, 1–19 (2017).


    Google Scholar
     

  • 130.

    Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) | The Long Term Archive. Available at: https://lta.cr.usgs.gov/GMTED2010. Accessed on 6 December 2018.

  • 131.

    European Space Agency. ESA – Land Cover CCI – Product User Guide Version 2.0. (2017).

  • 132.

    Frostegård, Å., Tunlid, A. & Bååth, E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Methods 14, 151–163 (1991).


    Google Scholar
     

  • 133.

    Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Eppo, P. M. Nematode extraction. EPPO Bull. 43, 471–495 (2013).


    Google Scholar
     

  • 135.

    ISO/FDIS. Soil Quality – Sampling Of Soil Invertebrates – Part 1: Hand-sorting And Extraction Of Earthworms. (ISO, 2018).

  • 136.

    ISO. Soil quality – Sampling Of Soil Invertebrates – Part 4: Sampling, Extraction And Identification Of Soil-Inhabiting Nematodes. (ISO, 09-2011).

  • 137.

    Hunter, P. A. DEAL for open access: The negotiations between the German DEAL project and publishers have global implications for academic publishing beyond just Germany. EMBO Rep. 19, e46317 (2018).

  • 138.

    Knapp, A. K. et al. Past, present, and future roles of long-term experiments in the LTER network. Bioscience 62, 377–389 (2012).

  • 139.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 1–8 (2017).


    Google Scholar
     

  • 141.

    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Gilbert, J. A., Jansson, J. K. & Knight, R. The earth microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 144.

    Darcy, J. L., Lynch, R. C., King, A. J., Robeson, M. S. & Schmidt, S. K. Global distribution of Polaromonas phylotypes–evidence for a highly successful dispersal capacity. PLoS ONE 6, e23742 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).

    PubMed 

    Google Scholar
     

  • 146.

    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 148.

    Neal, A. L. et al. Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific Acid phosphatase Gene diversity and abundance. Plant Soil 427, 175–189 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 107 (2017).

    PubMed 

    Google Scholar
     

  • 150.

    Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 151.

    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 152.

    Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 43, 2294–2303 (2011).

    CAS 

    Google Scholar
     

  • 153.

    Pärtel, M. et al. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytol. 216, 227–238 (2017).

    PubMed 

    Google Scholar
     

  • 154.

    Põlme, S. et al. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol. 198, 1239–1249 (2013).

    PubMed 

    Google Scholar
     

  • 155.

    Sharrock, R. A. et al. A global assessment using PCR techniques of mycorrhizal fungal populations colonising Tithonia diversifolia. Mycorrhiza 14, 103–109 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Tedersoo, L. et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 21, 4160–4170 (2012).

    PubMed 

    Google Scholar
     

  • 157.

    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe: arbuscular mycorrhizal fungal communities around the globe. J. Ecol. 94, 778–790 (2006).


    Google Scholar
     

  • 158.

    Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).

    PubMed 

    Google Scholar
     

  • 159.

    Stürmer, S. L., Bever, J. D. & Morton, J. B. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28, 587–603 (2018).

    PubMed 

    Google Scholar
     

  • 160.

    Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 161.

    Lara, E., Roussel‐Delif, L. & Fournier, B. Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43, 520–532 (2016).

  • 162.

    Finlay, B. J., Esteban, G. F., Clarke, K. J. & Olmo, J. L. Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales. Protist 152, 355–366 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 163.

    Chao, A., C. Li, P., Agatha, S. & Foissner, W. A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114, 479–493 (2006).

  • 164.

    Foissner, W. Global soil ciliate (Protozoa, Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica. Biodivers. Conserv. 6, 1627–1638 (1997).


    Google Scholar
     

  • 165.

    Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties: Global-scale patterns of soil nematode assemblage structure. Glob. Ecol. Biogeogr. 23, 968–978 (2014).


    Google Scholar
     

  • 166.

    Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl Acad. Sci. USA 108, 17720–17725 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 167.

    Robeson, M. S. et al. Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proc. Natl Acad. Sci. USA 108, 4406–4410 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Chang. Biol. 14, 2661–2677 (2008).

  • 169.

    Pachl, P. et al. The tropics as an ancient cradle of oribatid mite diversity. Acarologia 57, 309–322 (2016).


    Google Scholar
     

  • 170.

    Dahlsjö, C. A. L. et al. First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J. Trop. Ecol. 30, 143–152 (2014).


    Google Scholar
     

  • 171.

    Briones, M. J. I., Ineson, P. & Heinemeyer, A. Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta‐analysis approach. Glob. Chang. Biol. 13, 2252–2269 (2007).

  • 172.

    Silver, W. L. & Miya, R. K. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407–419 (2001).

    ADS 
    PubMed 

    Google Scholar
     

  • 173.

    Zhang, T. ’an, Chen, H. Y. H. & Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 174.

    Sinsabaugh, R. L., Turner, B. L. & Talbot, J. M. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).

  • 175.

    Xu, M. & Shang, H. Contribution of soil respiration to the global carbon equation. J. Plant Physiol. 203, 16–28 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 176.

    Raich, J. W. & Tufekciogul, A. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48, 71–90 (2000).

    CAS 

    Google Scholar
     

  • 177.

    Wang, J., Chadwick, D. R., Cheng, Y. & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci. Total Environ. 616-617, 908–917 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 178.

    Rahmati, M. et al. Development and analysis of the Soil Water Infiltration Global database. Earth Syst. Sci. Data 10, 1237–1263 (2017).

    ADS 

    Google Scholar
     

  • 179.

    Serna-Chavez, H. M., Fierer, N. & van Bodegom, P. M. Global drivers and patterns of microbial abundance in soil: Global patterns of soil microbial biomass. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013).


    Google Scholar
     

  • 180.

    Howison, R. A., Olff, H., Koppel, J. & Smit, C. Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecol. Monogr. 87, 363–378 (2017).

  • 181.

    Lehmann, A., Zheng, W. & Rillig, M. C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol.1, 1–9 (2017).


    Google Scholar
     

  • 182.

    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).


    Google Scholar
     

  • 183.

    van Straaten Oliver, Z. R. T. A. & Bossio, D. Carbon, Land And Water: A Global Analysis Of The Hydrologic Dimensions Of Climate Change Mitigation Through Afforestation/reforestation. (IWMI, 2006).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *