CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Scholz, C. H. & Campos, J. The seismic coupling of subduction zones revisited. J. Geophys. Res. 117, B05310 (2012).

    ADS 

    Google Scholar
     

  • 2.

    Pacheco, J. F., Sykes, L. R. & Scholz, C. H. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res. 108, 14133–14159 (1993).

    ADS 

    Google Scholar
     

  • 3.

    Bilek, S. & Lay, T. Subduction megathrust earthquakes. Geosphere 14, 1468–150 (2018).

    ADS 

    Google Scholar
     

  • 4.

    Goldfinger, C. et al. Turbidite Event History: Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone. U.S. Geological Survey Professional Paper 1661–F, 1-170 (U.S. Geological Survey, Reston, 2012).

  • 5.

    Wang, K. & Tréhu, A. M. Some outstanding issues in the study of great megathrust earthquakes—the Cascadia example. J. Geodyn. 98, 1–18 (2016).

    CAS 

    Google Scholar
     

  • 6.

    Shelly, D. R., Beroza, G. C., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Shelly, D. R., Beroza, G. C. & Ide, S. Non-volcanic tremor and low frequency earthquake swarms. Nature 446, 305–307 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Royer, A. A. & Bostock, M. G. A comparative study of low frequency earthquake templates in northern Cascadia. Earth Planet. Sci. Lett. 402, 247–256 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R. & Allen, R. M. Slab morphology in the Cascadia fore arc and its relation to episodic tremor and slip. J. Geophys. Res. https://doi.org/10.1029/2008JB006053 (2010).

  • 10.

    McCrory, P. A., Blair, J. L. & Oppenheimer, D. H. Depth to the Juan de Fuca Slab Beneath the Cascadia Subduction Margin—A 3-D model for sorting earthquakes. In U.S. Geological Survey Data Series, 91, 1–22 (U.S. Geological Survey, Reston, 2006).

  • 11.

    Bangs, N. L. B., Shipley, T. H., Moore, J. C. & Moore, G. F. Fluid accumulation and channeling along the northern Barbados Ridge decollement thrust. J. Geophys. Res. 104, 20399–20414 (1999).

    ADS 

    Google Scholar
     

  • 12.

    Calvert, A. J. Seismic reflection constraints on imbrication and underplating of the northern Cascadia convergent margin. Can. J. Earth Sci. 33, 1294–1307 (1996).

    ADS 

    Google Scholar
     

  • 13.

    Nedimović, M. R., Hyndman, R. D., Ramachandran, K. & Spence, G. D. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature 424, 416–420 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • 14.

    Li, J. et al. Downdip variations in seismic reflection character: Implications for fault structure and seismogenic behavior in the Alaska subduction zone. J. Geophys. Res. 120, 7883–7904 (2015).

    ADS 

    Google Scholar
     

  • 15.

    Singh, S. C. et al. Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nat. Geosci. 1, 777–781 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Bostock, M. G., Rondenay, S. & Shragge, J. Multiparameter two-dimensional inversion of scattered teleseismic body waves, 1, Theory for oblique incidence. J. Geophys. Res. 106, 30771–30782 (2001).

    ADS 

    Google Scholar
     

  • 17.

    Rondenay, S., Abers, G. A. & van Keken, P. E. Seismic imaging of subduction metamorphism. Geology 36, 275–278 (2008).

    ADS 

    Google Scholar
     

  • 18.

    Kim, Y., Miller, M. S., Pearce, F. & Clayton, R. W. Seismic imaging of the Cocos plate subduction zone system in central Mexico. Geochem. Geophys. Geosyst. 13, 1525–2027 (2012).


    Google Scholar
     

  • 19.

    Pearce, F. D., Rondenay, S., Sachpazi, M., Charalampakis, M. & Royden, L. H. Seismic investigations of the transition from continental to oceanic subduction along the western Hellenic Subduction Zone. J. Geophys. Res. 117, B07306 (2012).

    ADS 

    Google Scholar
     

  • 20.

    Kim, Y. et al. Alaska megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone. J. Geophys. Res. 119, 1924–1941 (2014).

    ADS 

    Google Scholar
     

  • 21.

    Hansen, R. T. J., Bostock, M. G. & Christensen, N. I. Nature of the low velocity zone in Cascadia from receiver function waveform inversion. Earth Planet Sci. Lett. 337-338, 25–38 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Kato, A. et al. Variations of fluid pressure within the subducting oceanic crust and slow earthquakes. Gephys. Res. Lett. 37, L14310 (2010).

    ADS 

    Google Scholar
     

  • 24.

    Wang, X., Zhao, D., Suzuk, H., Li, J. & Ruan, A. Eclogitization of the subducted oceanic crust and its implications for the mechanism of slow earthquakes. Geophys. Res. Lett. 44, 12125–12132 (2017).

    ADS 

    Google Scholar
     

  • 25.

    Savard, G., Bostock, M. G. & Christensen, N. I. Seismicity, metamorphism, and fluid evolution across the northern Cascadia fore arc. Geochem. Geophys. Geosyst. 19, 1881–1897 (2018).

    ADS 

    Google Scholar
     

  • 26.

    Abers, G. A. et al. Imaging the source region of Cascadia tremor and intermediate-depth earthquakes. Geology 37, 1119–1122 (2009).

    ADS 

    Google Scholar
     

  • 27.

    Nicholson, T., Bostock, M. G. & Cassidy, J. F. New constraints on subduction zone structure in northern Cascadia. Geophys. J. Int. 161, 849–859 (2005).

    ADS 

    Google Scholar
     

  • 28.

    Clowes, R. M. et al. LITHOPROBE – southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflection. Can. J. Earth. Sci. 24, 31–51 (1987).

    ADS 

    Google Scholar
     

  • 29.

    Fisher, M. A. et al. Seismic survey probes urban earthquake hazards in Pacific Northwest. Eos 80, 13–17 (1999).

    ADS 

    Google Scholar
     

  • 30.

    Brocher, T. M. et al. Wide-angle seismic recordings from the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), western Washington and British Columbia. U.S. Geological Survey Open File Report 99-314, 1–129 (U.S. Geological Survey, Reston, 1999).

  • 31.

    Brocher, T. et al. Report for explosion data acquired in the 1999 Seismic Hazards Investigation in Puget Sound (SHIPS), Washington. U.S. Geological Survey Open File Report 00-318, 1–85 (U.S. Geological Survey, Reston, 2000).

  • 32.

    Rippe, D., Unsworth, M. J. & Currie, C. A. Magnetotelluric constraints on fluid content in the upper mantle beneath the southern Cordillera: Implications for rheology. J. Geophys. Res. 118, 5601–5624 (2014).


    Google Scholar
     

  • 33.

    Wannamaker, P. E. et al. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosyst. 15, 4230–4253 (2014).

    ADS 

    Google Scholar
     

  • 34.

    Kao, H., Wang, K., Dragert, H., Kao, J. Y. & Rogers, G. Estimating seismic moment magnitude (Mw) of tremor bursts in northern Cascadia: Implications for the “seismic efficiency” of episodic tremor and slip. Geophys. Res. Lett. 37, L19306 (2010).

    ADS 

    Google Scholar
     

  • 35.

    Green, A. G. et al. Seismic reflection imaging of the subducting Juan de Fuca plate. Nature 319, 210–213 (1986).

    ADS 

    Google Scholar
     

  • 36.

    Calvert, A. J., Ramachandran, K., Kao, H. & Fisher, M. A. Local thickening of the Cascadia forearc crust and the origin of reflectors in the uppermost mantle. Tectonophysics 420, 175–188 (2006).

    ADS 

    Google Scholar
     

  • 37.

    Calvert, A. J. & Clowes, R. M. Deep, high-amplitude reflections from a major shear zone above the subducting Juan de Fuca plate. Geology 18, 1091–1094 (1990).

    ADS 

    Google Scholar
     

  • 38.

    Angiboust, S., Agard, P., Raimbourg, H., Yamato, P. & Huet, B. Subduction interface processes recorded by eclogite-facies shear zones. Lithos 127, 222–238 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Calvert, A. J., Preston, L. P. & Farahbod, A. M. Sedimentary underplating at the Cascadia mantle-wedge corner revealed by seismic imaging. Nat. Geosci. 4, 545–548 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Christensen, N. I. Poisson’s ratio and crustal seismology. J. Geophys. Res. 101, 3139–3156 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Cassidy, J. F. & Ellis, R. M. Shear wave velocity constraints on a deep crustal reflective zone beneath Vancouver Island. J. Geophys. Res. 96, 19843–19851 (1991).

    ADS 

    Google Scholar
     

  • 42.

    Agard, P., Plunder, A., Angiboust, S., Bonnet, G. & Ruh, J. The subduction plate interface: rock record and mechanical coupling (from long to short timescales). Lithos 320-321, 537–566 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Kimura, G. & Ludden, J. Peeling oceanic crust in subduction zones. Geology 23, 217–220 (1995).

    ADS 

    Google Scholar
     

  • 44.

    Menant, A. et al. Transient stripping of subducting slabs controls periodic forearc uplift. Nat. Commun. 11, https://doi.org/10.1038/s41467-020-15580-7 (2020).

  • 45.

    Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M. & Tréhu, A. M. Intraslab earthquakes: Dehydration of the Cascadia slab. Science 302, 1197–1200 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Kurtz, R. D., DeLaurier, J. M. & Gupta, J. C. A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate. Nature 321, 596–599 (1986).

    ADS 

    Google Scholar
     

  • 47.

    Canales, J. P., Carbotte, S. M., Nedimović, M. R. & Carton, H. Dry Juan De Fuca slab revealed by quantification of water entering Cascadia subduction zone. Nat. Geosci. 10, 864–870 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Hacker, B.R., Abers, G.A. & Peacock, S.M. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. https://doi.org/10.1029/2001JB001127 (2003).

  • 49.

    Gao, X. & Wang, K. Strength of stick-slip and creeping subduction megathrusts from heat flow measurements. Science 345, 1038–1041 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Hyndman, R. D. Dipping seismic reflectors, electrically conductive zones, and trapped water in the crust over a subducting plate. J. Geophys. Res. 93, 13391–13405 (1988).

    ADS 

    Google Scholar
     

  • 51.

    Peacock, S. M., Christensen, N. I., Bostock, M. G. & Audet, P. High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology 39, 410–474 (2011).


    Google Scholar
     

  • 52.

    Fagereng, Å. et al. Geological Society of America Special Paper 534, 187–215 (Geological Society of America, Boulder, 2018).

  • 53.

    Royer, A. A., Thomas, A. M. & Bostock, M. G. Tidal modulation and triggering of low-frequency earthquakes in northern Cascadia. J. Geophys. Res. 120, 384–405 (2015).

    ADS 

    Google Scholar
     

  • 54.

    Hawthorne, J. C. & Rubin, A. M. Tidal modulation of slow slip in Cascadia. J. Geophys. Res. 115, B09406 (2010).

    ADS 

    Google Scholar
     

  • 55.

    Bachmann, R. et al. Exposed plate interface in the European Alps reveals fabric styles and gradients related to an ancient seismogenic coupling zone. J. Geophys. Res. 114, B05402 (2009).

    ADS 

    Google Scholar
     

  • 56.

    Gosselin, J. M. et al. Seismic evidence for megathrust fault-valve behavior during episodic tremor and slip. Sci. Adv. 6, eaay5174, https://doi.org/10.1126/sciadv.aay5174eaay5174 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    McCrory, P. A., Constanz, J. E., Hunt, A. G. & Blaire, J. L. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc. Geochem. Geophys. Geosyst. 17, 2434–2449 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Brocher, T. M., Parsons, T., Trehu, A. M., Snelson, C. M. & Fisher, M. A. Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia subduction zone. Geology 31, 267–270 (2003).

    ADS 

    Google Scholar
     

  • 59.

    Christensen, N. I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2010).


    Google Scholar
     

  • 60.

    Calvert, A. J. Seismic reflection imaging of two megathrust shear zone in the northern Cascadia subduction zone. Nature 428, 163–167 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Royle, G. T., Calvert, A. J. & Kao, H. Observations of non-volcanic tremor during the northern Cascadia slow-slip event in February 2002. Geophys. Res. Lett. 33, L18313 (2006).

    ADS 

    Google Scholar
     

  • 62.

    Zhang, H. & Thurber, C. F. Double-difference tomography: The method and its applications to the Hayward Fault, California. Bull. Seismol. Soc. Am. 93, 1875–1889 (2003).


    Google Scholar
     

  • 63.

    Preston, L. A. Simultaneous inversion of 3D velocity structure, hypocenter locations, and reflector geometry in Cascadia. Ph.D. Thesis, Univ. Washington, Seattle, 1–112 (2003).

  • 64.

    Ramachandran, K., Hyndman, R. D. & Brocher, T. M. Regional P wave velocity structure of the northern Cascadia subduction zone. J. Geophys. Res. 111, B12301 (2006).

    ADS 

    Google Scholar
     

  • 65.

    Rodi, W. & Mackie, R. L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66, 174–187 (2001).

    ADS 

    Google Scholar
     

  • 66.

    Jones, A. G. The problem of current channelling: a critical review. Geophys. Surv. 6, 79–122 (1983).

    ADS 

    Google Scholar
     

  • 67.

    Haugerud, R. A. Digital Elevation Model (DEM) of Cascadia, Latitude 39N-53N, longitude 116W-133W. U.S. Geological Survey Open File Report. 99–369 (U.S. Geological Survey, Reston, 1999).

  • 68.

    Li, G., Liu, Y., Regalla, C. & Morrell, K. D. Seismicity relocation and fault structure near the Leech River fault zone, southern Vancouver Island. J. Geophys. Res. 123, 2841–2855 (2018).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *