CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Huttenhower, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Nugent, R. P., Krohn, M. A. & Hillier, S. L. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 29, 297–301 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Amsel, R. et al. Nonspecific vaginitis: diagnostic criteria and microbial and epidemiologic associations. Am. J. Med. 74, 14–22 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Boris, S. & Barbes, C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect 2, 543–546 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Tyssen, D. et al. Anti-HIV-1 Activity of Lactic Acid in Human Cervicovaginal Fluid. mSphere 3, e00055–00018 (2018).

  • 6.

    Petrova, M. I., Reid, G., Vaneechoutte, M. & Lebeer, S. Lactobacillus iners: friend or foe?. Trends Microbiol. 25, 182–191 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Schwebke, J. R. & Desmond, R. Natural history of asymptomatic bacterial vaginosis in a high-risk group of women. Sex. Transm. Dis. 34, 876–877 (2007).

    PubMed 

    Google Scholar
     

  • 8.

    Larsson, P.-G., Platz-Christensen, J.-J., Thejls, H., Forsum, U. & Påhlson, C. Incidence of pelvic inflammatory disease after first-trimester legal abortion in women with bacterial vaginosis after treatment with metronidazole: a double-blind, randomized study. Am. J. Obstet. Gynecol. 166, 100–103 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Hillier, S. L. et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N. Engl. J. Med. 333, 1737–1742 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Donders, G. et al. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG 116, 1315–1324 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Borgdorff, H. et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 8, 1781 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Cherpes, T. L., Hillier, S. L., Meyn, L. A., Busch, J. L. & Krohn, M. A. A delicate balance: risk factors for acquisition of bacterial vaginosis include sexual activity, absence of hydrogen peroxide-producing lactobacilli, black race, and positive herpes simplex virus type 2 serology. Sex. Transm. Dis. 35, 78–83 (2008).

    PubMed 

    Google Scholar
     

  • 13.

    Dareng, E. O. et al. Prevalent high-risk HPV infection and vaginal microbiota in Nigerian women. Epidemiol. Infect. 144, 123–137 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Brotman, R. M. et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J. Infect. Dis. 210, 1723–1733 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Lee, J. E. et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS ONE 8, e63514–e63514 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Rodriguez-Cerdeira, C., Sanchez-Blanco, E. & Alba, A. Evaluation of association between vaginal infections and high-risk human papillomavirus types in female sex workers in Spain. ISRN Obstet. Gynecol. https://doi.org/10.5402/2012/240190 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Di Paola, M. et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection. Sci. Rep. 7, 10200 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Cauci, S. Vaginal immunity in bacterial vaginosis. Curr. Infect. Dis. Rep. 6, 450–456 (2004).

    PubMed 

    Google Scholar
     

  • 19.

    Stokholm, J. et al. Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin. Microbiol. Infect. 20, 629–635 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Welch, J. S. Quantitative and qualitative effects of douche preparations on vaginal microflora. Obstet. Gynecol. 81, 320–321 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Brotman, R. M. et al. The effect of vaginal douching cessation on bacterial vaginosis: a pilot study. Am. J. Obstet. Gynecol. 198(628), e621-628 (2008).


    Google Scholar
     

  • 22.

    Schwebke, J. R., Richey, C. M. & Weiss, H. L. Correlation of behaviors with microbiological changes in vaginal flora. J. Infect. Dis. 180, 1632–1636 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Beigi, R. H., Wiesenfeld, H. C., Hillier, S. L., Straw, T. & Krohn, M. A. Factors associated with absence of H2O2-producing Lactobacillus among women with bacterial vaginosis. J. Infect. Dis. 191, 924–929 (2005).

    PubMed 

    Google Scholar
     

  • 24.

    Ahluwalia, N. & Grandjean, H. Nutrition, an under-recognized factor in bacterial vaginosis. J. Nutr. 137, 1997–1998 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Neggers, Y. H. et al. Dietary intake of selected nutrients affects bacterial vaginosis in women. J. Nutr. 137, 2128–2133 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Brotman, R. M. et al. Association between cigarette smoking and the vaginal microbiota: a pilot study. BMC Infect. Dis. 14, 471 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    van Houdt, R. et al. Lactobacillus iners-dominated vaginal microbiota is associated with increased susceptibility to Chlamydia trachomatis infection in Dutch women: a case–control study. Sex. Transm. Infect. 94, 117–123 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Noyes, N., Cho, K.-C., Ravel, J., Forney, L. J. & Abdo, Z. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis. PLoS ONE 13, e0191625 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108(Suppl 1), 4680–4687 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Zhou, X. et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J. 1, 121–133 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Zhou, X. et al. The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunol. Med. Microbiol. 58, 169–181 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Borgdorff, H. et al. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS ONE 12, e0181135 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Verstraelen, H. et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1–2 region of the 16S rRNA gene. PeerJ 4, e1602 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Rick, A.-M. et al. Open forum infectious diseases. (Oxford University Press, Oxford).

  • 35.

    Anukam, K. C., Osazuwa, E. O., Ahonkhai, I. & Reid, G. Lactobacillus vaginal microbiota of women attending a reproductive health care service in Benin city, Nigeria. Sex. Transm. Dis. 33, 59–62 (2006).

    PubMed 

    Google Scholar
     

  • 36.

    Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America Dated to the Last Glacial Maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Bortolini, M. C. et al. Y-chromosome evidence for differing ancient demographic histories in the Americas. Am. J. Hum. Genet. 73, 524–539 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Hurtado, A. M., Hurtado, I. & Hill, K. Public health and adaptive immunity among natives of South America. Lost Paradises and the Ethics of Research and Publication 164–192 (Oxford University Press, New York, 2003).

  • 39.

    Lindenau, J. et al. Distribution patterns of variability for 18 immune system genes in Amerindians–relationship with history and epidemiology. HLA 82, 177–185 (2013).

    CAS 

    Google Scholar
     

  • 40.

    Bhatia, K. K., Black, F. L., Smith, T. A., Prasad, M. L. & Koki, G. N. Class I HLA antigens in two long-separated populations: Melanesians and South Amerinds. Am. J. Phys. Anthropol. 97, 291–305 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Watkins, D. I. et al. New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 357, 329–333 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Ewerton, P. D., de Meira Leite, M., Magalhães, M., Sena, L. & dos Santos, E. J. M. Amazonian Amerindians exhibit high variability of KIR profiles. Immunogenetics 59, 625–630 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Freire, G. & Tillett, A. Salud indígena en Venezuela. First volume. (Dirección de Salud Indígena, 2007).

  • 44.

    Contreras, M. et al. The bacterial microbiota in the oral mucosa of rural Amerindians. Microbiology 156, 3282–3287 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Blaser, M. J. et al. Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J. 7, 86–95 (2012).


    Google Scholar
     

  • 47.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–222 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Godinho, N. M. D. O. O Impacto das Migrações na Constituição Genética de Populações Latino-Americanas. (2008).

  • 49.

    Jespers, V. et al. The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: a cross-sectional descriptive study across groups of African women. BMC Infect. Dis. 15, 115 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Gosmann, C. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in Young South African Women. Immunity 46, 29–37 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Godoy-Vitorino, F. et al. Cervicovaginal fungi and bacteria associated with cervical intraepithelial neoplasia and high-risk Human Papillomavirus infections in a Hispanic population. Front. Microbiol. 9, 2533 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Tarnberg, M., Jakobsson, T., Jonasson, J. & Forsum, U. Identification of randomly selected colonies of lactobacilli from normal vaginal fluid by pyrosequencing of the 16S rDNA variable V1 and V3 regions. APMIS 110, 802–810 (2002).

    PubMed 

    Google Scholar
     

  • 53.

    Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Shen, J. et al. Effects of low dose estrogen therapy on the vaginal microbiomes of women with atrophic vaginitis. Sci. Rep. 6, 24380 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Witkin, S. S. et al. Vaginal biomarkers that predict cervical length and dominant bacteria in the vaginal microbiomes of pregnant women. mBio 10, e02242-129 (2019).


    Google Scholar
     

  • 56.

    Ravel, J. et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 1, 29 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Smith, B. C. et al. The cervical microbiome over 7 years and a comparison of methodologies for its characterization. PLoS ONE 7, e40425 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra152 (2012).


    Google Scholar
     

  • 59.

    Kim, T. K. et al. Heterogeneity of vaginal microbial communities within individuals. J. Clin. Microbiol. 47, 1181–1189 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Liu, M.-B. et al. Diverse vaginal microbiomes in reproductive-age women with vulvovaginal candidiasis. PLoS ONE 8, e79812 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Verstraelen, H. et al. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 9, 116 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Byrne, E. H. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42, 965–976 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Mach, N. & Fuster-Botella, D. Endurance exercise and gut microbiota: a review. J. Sport Health Sci. 6, 179–197 (2017).

    PubMed 

    Google Scholar
     

  • 64.

    Tasnim, N., Abulizi, N., Pither, J., Hart, M. M. & Gibson, D. L. Linking the gut microbial ecosystem with the environment: does gut health depend on where we live?. Front. Microbiol. 8, 1935 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Collins, M. D. The Prokaryotes 1013–1019 (Springer, Berlin, 2006).


    Google Scholar
     

  • 66.

    Freitas, A. C. et al. Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. Microbiome 6, 117 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Marrazzo, J. M., Thomas, K. K., Fiedler, T. L., Ringwood, K. & Fredricks, D. N. Relationship of specific vaginal bacteria and bacterial vaginosis treatment failure in women who have sex with women. Ann. Intern. Med. 149, 20–28 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Si, J., You, H. J., Yu, J., Sung, J. & Ko, G. Prevotella as a hub for vaginal microbiota under the influence of host genetics and their association with obesity. Cell Host Microbe 21, 97–105 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Srinivasan, S. et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE 7, e37818 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Yeoman, C. J. et al. A multi-omic systems-based approach reveals metabolic markers of bacterial vaginosis and insight into the disease. PLoS ONE 8, e56111 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Oakley, B. B., Fiedler, T. L., Marrazzo, J. M. & Fredricks, D. N. Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis. Appl. Environ. Microbiol. 74, 4898–4909 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Machado, A. & Cerca, N. Influence of biofilm formation by gardnerella vaginalis and other anaerobes on bacterial vaginosis. J. Infect. Dis. 212, 1856–1861 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Vargas-Robles, D. et al. High rate of infection by only oncogenic human papillomavirus in Amerindians. mSphere 3, e00176-e118 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Song, D., Li, H., Li, H. & Dai, J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol. Lett. 10, 600–606 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Briselden, A. M., Moncla, B. J., Stevens, C. E. & Hillier, S. L. Sialidases (Neuraminidases) in bacterial vaginosis and bacterial vaginosis-associated microflora. J. Clin. Microbiol. 30, 663–666 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Gillet, E. et al. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis. BMC Infect. Dis. 11, 10 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Discacciati, M. G. et al. Presence of 20% or more clue cells: an accurate criterion for the diagnosis of bacterial vaginosis in Papanicolaou cervical smears. Diagn. Cytopathol. 34, 272–276 (2006).

    PubMed 

    Google Scholar
     

  • 78.

    World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity (World Health Organization, Geneva, 2011).


    Google Scholar
     

  • 79.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Allard, G., Ryan, F. J., Jeffery, I. B. & Claesson, M. J. SPINGO: a rapid species-classifier for microbial amplicon sequences. BMC Bioinform. 16, 324 (2015).


    Google Scholar
     

  • 82.

    Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24, 1757–1764 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Muzny, C. A. et al. Characterization of the vaginal microbiota among sexual risk behavior groups of women with bacterial vaginosis. PLoS ONE 8, e80254 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).

  • 87.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing (2010).

  • 88.

    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639 (2001).


    Google Scholar
     

  • 89.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. (2015).

  • 90.

    textmineR: Functions for Text Mining and Topic Modeling v. 2.0.6 (2017).

  • 91.

    Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    MATH 

    Google Scholar
     

  • 92.

    Walther, R. T. A. G. Cluster validation by prediction strength. J. Comput. Graph. Stat. 14, 511–528 (2005).

    MathSciNet 

    Google Scholar
     

  • 93.

    Philentropy: Information Theory and Distance Quantification with R (2018).

  • 94.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7, 1451–1456 (2016).


    Google Scholar
     

  • 95.

    Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).


    Google Scholar
     

  • 96.

    Viera, A. J. & Garrett, J. M. Understanding interobserver agreement: the kappa statistic. Fam. Med. 37, 360–363 (2005).

    PubMed 

    Google Scholar
     

  • 97.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Nakazawa, M. fmsb: Functions for medical statistics book with some demographic data. R package version 0.4 (2014).

  • 99.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 100.

    Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).


    Google Scholar
     

  • 101.

    gplots: Various R Programming Tools for Plotting Data (R, 2016).

  • 102.

    Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *