CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Morimoto, K. et al. Alveolar macrophages that phagocytose apoptotic neutrophils produce hepatocyte growth factor during bacterial pneumonia in mice. Am. J. Respir. Cell Mol. Biol. 24, 608–615. https://doi.org/10.1165/ajrcmb.24.5.4292 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    McCubbrey, A. L. & Curtis, J. L. Efferocytosis and lung disease. Chest 143, 1750–1757. https://doi.org/10.1378/chest.12-2413 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Vandivier, R. W., Henson, P. M. & Douglas, I. S. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129, 1673–1682. https://doi.org/10.1378/chest.129.6.1673 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Vandivier, R. W. et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J. Clin. Investig. 109, 661–670. https://doi.org/10.1172/JCI13572 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Huynh, M. L. N. Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am. J. Respir. Crit. Care Med. 172, 972–979. https://doi.org/10.1164/rccm.200501-035OC (2005).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Hodge, S., Dean, M., Hodge, G., Holmes, M. & Reynolds, P. N. Decreased efferocytosis and mannose binding lectin in the airway in bronchiolitis obliterans syndrome. J. Heart Lung Transplant. 30, 589–595. https://doi.org/10.1016/j.healun.2011.01.710 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Henson, P. M. Cell removal: efferocytosis. Annu. Rev. Cell Dev. Biol. https://doi.org/10.1146/annurev-cellbio-111315-125315 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Chimini, G. & Chavrier, P. Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat. Cell Biol. 2, E191-196. https://doi.org/10.1038/35036454 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Kim, S.-Y. et al. Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite. PLoS ONE 12, e0174603-0174619. https://doi.org/10.1371/journal.pone.0174603 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Richens, T. R. et al. Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am. J. Respir. Crit. Care Med. 179, 1011–1021. https://doi.org/10.1164/rccm.200807-1148OC (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Hampton, R. Y. ER stress response: getting the UPR hand on misfolded proteins. Curr. Biol. 10, R518-521. https://doi.org/10.1016/S0960-9822(00)00583-2 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Zhao, L. & Ackerman, S. L. Endoplasmic reticulum stress in health and disease. Curr. Opin. Cell Biol. 18, 444–452. https://doi.org/10.1016/j.ceb.2006.06.005 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Hotamisligil, G. S. Endoplasmic reticulum stress and atherosclerosis. Nat. Med. 16, 396–399. https://doi.org/10.1038/nm0410-396 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Korfei, M. et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178, 838–846. https://doi.org/10.1164/rccm.200802-313OC (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Lawson, W. E. et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc. Natl. Acad. Sci. USA 108, 10562–10567. https://doi.org/10.1073/pnas.1107559108 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Marcinak, S. J. & Ron, D. The unfolded protein response in lung disease. Proc. Am. Thorac. Soc. 7, 356–362. https://doi.org/10.1513/pats.201001-015AW (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Somborac-Bacura, A. et al. Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp. Physiol. 98, 316–325. https://doi.org/10.1113/expphysiol.2012.067249 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Tanjore, H., Blackwell, T. S. & Lawson, W. E. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. AJP Lung Cell. Mol. Physiol. 302, L721–L729. https://doi.org/10.1152/ajplung.00410.2011 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Malhotra, D. et al. Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am. J. Respir. Crit. Care Med. 180, 1196–1207. https://doi.org/10.1164/rccm.200903-0324OC (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Cash, J. G. et al. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J. Biol. Chem. 287, 27876–27884. https://doi.org/10.1074/jbc.M112.377549 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Weaver, M. S., Workman, G. & Sage, E. H. The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. J. Biol. Chem. 283, 22826–22837. https://doi.org/10.1074/jbc.M706563200 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Kunigal, S. et al. SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. Int. J. Oncol. 29, 1349–1357 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Boyce, M. et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935–939. https://doi.org/10.1126/science.1101902 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Hong, D. et al. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis 235, 310–317. https://doi.org/10.1016/j.atherosclerosis.2014.04.028 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Axten, J. M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207. https://doi.org/10.1021/jm300713s (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Hodge, S. et al. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 37, 748–755. https://doi.org/10.1165/rcmb.2007-0025OC (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Morimoto, K., Janssen, W. J. & Terada, M. Defective efferocytosis by alveolar macrophages in IPF patients. Respir. Med. 106, 1800–1803. https://doi.org/10.1016/j.rmed.2012.08.020 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Morimoto, K. et al. Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J. Immunol. 176, 7657–7665 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Hodge, S. et al. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am. J. Respir. Cell Mol. Biol. 44, 673–681. https://doi.org/10.1165/rcmb.2009-0459OC (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Chen, A. C. H., Burr, L. & McGuckin, M. A. Oxidative and endoplasmic reticulum stress in respiratory disease. Clin. Transl. Immunol. 7, e1019. https://doi.org/10.1002/cti2.1019 (2018).

    Article 

    Google Scholar
     

  • 32.

    Kenche, H., Baty, C. J., Vedagiri, K., Shapiro, S. D. & Blumental-Perry, A. Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J. 27, 965–977. https://doi.org/10.1096/fj.12-216234 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Abdel-Ghaffar, A. et al. Potential prophylactic effect of chemical chaperones for alleviation of endoplasmic reticulum stress in experimental diabetic cataract. Bull. Natl. Res. Centre 43, 1–15. https://doi.org/10.1186/s42269-019-0089-7 (2019).

    Article 

    Google Scholar
     

  • 34.

    Fernández-Sánchez, L. et al. Natural compounds from saffron and bear bile prevent vision loss and retinal degeneration. Molecules 20, 13875–13893. https://doi.org/10.3390/molecules200813875 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Gaspar, J. M. et al. Tauroursodeoxycholic acid protects retinal neural cells from cell death induced by prolonged exposure to elevated glucose. Neuroscience 253, 380–388. https://doi.org/10.1016/j.neuroscience.2013.08.053 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Kusaczuk, M. Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cells https://doi.org/10.3390/cells8121471 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Vang, S., Longley, K., Steer, C. J. & Low, W. C. The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob. Adv. Health Med. 3, 58–69. https://doi.org/10.7453/gahmj.2014.017 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Batta, A. K., Salen, G., Shefer, S., Tint, G. S. & Dayal, B. The effect of tauroursodeoxycholic acid and taurine supplementation on biliary bile acid composition. Hepatology 2, 811–816. https://doi.org/10.1002/hep.1840020612 (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905. https://doi.org/10.2337/db10-0308 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Setchell, K. D. R., Rodrigues, C. M. P., Podda, M. & Crosignani, A. Metabolism of orally administered tauroursodeoxycholic acid in patients with primary biliary cirrhosis. Gut 38, 439–446. https://doi.org/10.1136/gut.38.3.439 (1996).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Walsh, L. K., Restaino, R. M., Neuringer, M., Manrique, C. & Padilla, J. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load. Clin. Sci. 130, 1881–1888. https://doi.org/10.1042/cs20160501 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Alam, S. et al. Z α1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 189, 909–931. https://doi.org/10.1164/rccm.201308-1458OC (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Vlahos, R. & Bozinovski, S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front. Immunol. 5, 435. https://doi.org/10.3389/fimmu.2014.00435 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Janssen, W. J. et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184, 547–560. https://doi.org/10.1164/rccm.201011-1891OC (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Costales, P. et al. Lipopolysaccharide downregulates CD91/low-density lipoprotein receptor-related protein 1 expression through SREBP-1 overexpression in human macrophages. Atherosclerosis 227, 79–88. https://doi.org/10.1016/j.atherosclerosis.2012.12.021 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E–115 cells. J. Cell Biol. 141, 1625–1636. https://doi.org/10.1083/jcb.141.7.1625 (1998).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Nobe, H., Nobe, K., Fazal, F., de Lanerolle, P. & Paul, R. J. Rho kinase mediates serum-induced contraction in fibroblast fibers independent of myosin LC20 phosphorylation. Am. J. Physiol. Cell Physiol. 284, C599-606. https://doi.org/10.1152/ajpcell.00188.2002 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994. https://doi.org/10.1038/40187 (1997).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Su, Y., Han, W., Giraldo, C., De Li, Y. & Block, E. R. Effect of cigarette smoke extract on nitric oxide synthase in pulmonary artery endothelial cells. Am. J. Respir. Cell Mol. Biol. 19, 819–825. https://doi.org/10.1165/ajrcmb.19.5.3091 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Rojas-Rivera, D. et al. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ. 24, 1100–1110. https://doi.org/10.1038/cdd.2017.58 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Mahameed, M. et al. The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis. 10, 300. https://doi.org/10.1038/s41419-019-1523-3 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Kessel, D. Protection of Bcl-2 by salubrinal. Biochem. Biophys. Res. Commun. 346, 1320–1323. https://doi.org/10.1016/j.bbrc.2006.06.056 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635. https://doi.org/10.1038/nature01148 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Miksa, M., Komura, H., Wu, R., Shah, K. G. & Wang, P. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J. Immunol. Methods 342, 71–77. https://doi.org/10.1016/j.jim.2008.11.019 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574. https://doi.org/10.1126/science.276.5318.1571 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Stöhr, R., Deckers, N., Schurgers, L., Marx, N. & Reutelingsperger, C. P. AnnexinA5-pHrodo: a new molecular probe for measuring efferocytosis. Sci. Rep. 8, 17731–17739. https://doi.org/10.1038/s41598-018-35995-z (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Yamashita, Y. et al. Impairment of tissue repair in pneumonia due to β-cell deficiency: role of endoplasmic reticulum stress in alveolar macrophages. BMC Res. Notes 12, 160. https://doi.org/10.1186/s13104-019-4209-0 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Cho, Y. J., Henson, P. M. & Kang, J. L. RhoA-mediated signaling up-regulates hepatocyte growth factor gene and protein expression in response to apoptotic cells. J. Leukoc. Biol. 89, 399–411. https://doi.org/10.1189/jlb.0710414 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Cole, B. K. et al. 12/15-Lipoxygenase signaling in the endoplasmic reticulum stress response. Am. J. Physiol. Endocrinol. Metab. 302, E654-665. https://doi.org/10.1152/ajpendo.00373.2011 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Tanaka, T., Terada, M., Ariyoshi, K. & Morimoto, K. Monocyte chemoattractant protein-1/CC chemokine ligand 2 enhances apoptotic cell removal by macrophages through Rac1 activation. Biochem. Biophys. Res. Commun. 399, 677–682. https://doi.org/10.1016/j.bbrc.2010.07.141 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Noda, N. et al. Cigarette smoke impairs phagocytosis of apoptotic neutrophils by alveolar macrophages via inhibition of the histone deacetylase/Rac/CD9 pathways. Int. Immunol. 25, 643–650. https://doi.org/10.1093/intimm/dxt033 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *