CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Tomitani A, Knoll AH, Cavanaugh CM, Ohno T. The evolutionary diversification of Cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA. 2006;103:5442–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 2.

    Schirrmeister BE, Gugger M, Donoghue PCJ. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology. 2015;58:769–85.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Fischer WW, Hemp J, Johnson JE. Evolution of oxygenic photosynthesis. Annu Rev Earth Planet Sci. 2016;44:647–83.

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science. 2017;355:1436–40.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 6.

    Sánchez-Baracaldo P. Origin of marine planktonic Cyanobacteria. Sci Rep. 2015;5:14–17.

    Article 
    CAS 

    Google Scholar
     

  • 7.

    Shang JL, Chen M, Hou S, Li T, Yang YW, Li Q, et al. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats. Environ Microbiol. 2019;21:845–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Chrismas NAM, Anesio AM, Śanchez-Baracaldo P. The future of genomics in polar and alpine Cyanobacteria. FEMS Microbiol Ecol. 2018;94:fiy032.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 9.

    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 2014;8:1892–903.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41:e121.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics. 2012;28:1033–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35:543–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans (LA): IEEE; 2010. pp 1–8.

  • 21.

    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife. 2013;2:e01102.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 23.

    Matheus Carnevali PB, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat Commun. 2019;10:1–16.

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Tung HoLS, Ané C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol. 2014;63:397–408.

    Article 

    Google Scholar
     

  • 26.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.


    Google Scholar
     

  • 27.

    Gan F, Bryant DA. Adaptive and acclimative responses of Cyanobacteria to far-red light. Environ Microbiol. 2015;17:3450–65.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.

    Article 

    Google Scholar
     

  • 29.

    Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50:138–50.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Zhu Q, Kosoy M, Dittmar K. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genom. 2014;15:717.

    Article 
    CAS 

    Google Scholar
     

  • 31.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 32.

    Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–2.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 33.

    Enright AJ. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Komárek J. A polyphasic approach for the taxonomy of Cyanobacteria: principles and applications. Eur J Phycol. 2016;51:346–53.

    Article 
    CAS 

    Google Scholar
     

  • 35.

    Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (Cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014;86:295–335.


    Google Scholar
     

  • 36.

    Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater Cyanobacterium at the origin of plastids. Curr Biol. 2017;27:386–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    de Vries J, Archibald JM. Endosymbiosis: did plastids evolve from a freshwater Cyanobacterium? Curr Biol. 2017;27:R103–5.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 38.

    Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, et al. Genomes of stigonematalean Cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol. 2013;5:31–44.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 39.

    Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA. 2013;110:1053–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 40.

    Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA. 2017;114:E7737–45.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 41.

    FitzJohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol. 2009;58:595–611.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci USA. 2013;110:20338–43.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature. 2010;464:90–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 44.

    Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine Picocyanobacteria. Microbiol Mol Biol Rev. 2009;73:249–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Poulton NJ, Acinas SG, Lauro FM, Cavicchioli R, Swan BK, Hanson NW, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA. 2013;110:11463–8.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 46.

    Bentkowski P, Van Oosterhout C, Ashby B, Mock T. The effect of extrinsic mortality on genome size evolution in prokaryotes. ISME J. 2017;11:1011–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 47.

    Steele JH, Brink KH, Scott BE. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J Mar Sci. 2019;76:50–9.

    Article 

    Google Scholar
     

  • 48.

    Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8:523–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 49.

    Luo H, Csűros M, Hughes AL, Moran MA. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio. 2013;4:1–8.

    Article 
    CAS 

    Google Scholar
     

  • 50.

    Whitton BA (editor). Ecology of Cyanobacteria II. Dordrecht, Netherlands: Springer; 2012.

  • 51.

    Yoshihara S, Katayama M, Geng X, Ikeuchi M. Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant Cell Physiol. 2004;45:1729–37.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Bhaya D, Takahashi A, Grossman AR. Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci USA. 2001;98:7540–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    Yang Y, Lam V, Adomako M, Simkovsky R, Jakob A, Rockwell NC, et al. Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci USA. 2018;115:E12378–87.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Kehoe DM, Gutu A. Responding to color: the regulation of complementary chromatic adaptation. Annu Rev Plant Biol. 2006;57:127–50.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 55.

    Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights Into the evolution of Picocyanobacteria and Phycoerythrin Genes (mpeBA and cpeBA). Front Microbiol. 2019;10:45.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Ting CS, Rocap G, King J, Chisholm SW. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 2002;10:134–42.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 57.

    Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science. 2014;345:1312–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 58.

    Thiel V, Tank M, Bryant DA. Diversity of chlorophototrophic bacteria revealed in the Omics Era. Annu Rev Plant Biol. 2018;69:21–49.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 59.

    Kühl M, Trampe E, Mosshammer M, Johnson M, Larkum AWD, Frigaard N-U, et al. Substantial near-infrared radiation-driven photosynthesis of chlorophyll f-containing Cyanobacteria in a natural habitat. Elife. 2020;9:e50871.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 60.

    Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 2008;4:1–13.

    Article 
    CAS 

    Google Scholar
     

  • 61.

    Sääf A, Baars L, von Heijne G. The internal repeats in the Na+/Ca 2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies. J Biol Chem. 2001;276:18905–7.

    PubMed 
    Article 

    Google Scholar
     

  • 62.

    Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L. Identification of a SulP-type bicarbonate transporter in marine Cyanobacteria. Proc Natl Acad Sci USA. 2004;101:18228–33.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 63.

    Sakamoto T, Inoue-Sakamoto K, Bryant DA. A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol. 1999;181:7363–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC. The role of the bidirectional hydrogenase in Cyanobacteria. Bioresour Technol. 2011;102:8368–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of Cyanobacteria. Microbiol Mol Biol Rev. 2002;66:1–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, et al. Distribution of arsenic resistance genes in prokaryotes. Front Microbiol. 2018;9:2473.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Fürst-Jansen JMR, de Vries S, de Vries J. Evo-physio: on stress responses and the earliest land plants. J Exp Bot. 2020;71:3254–69.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 69.

    Murik O, Oren N, Shotland Y, Raanan H, Treves H, Kedem I, et al. What distinguishes Cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Environ Microbiol. 2017;19:535–50.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 70.

    Gul N, Poolman B. Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli. Mol Membr Biol. 2013;30:138–48.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 71.

    Pathak J, Ahmed H, Singh PR, Singh SP, Häder D-P, Sinha RP. Mechanisms of photoprotection in Cyanobacteria. In: Mishra AK, Tiwari DN, Rai AN. editors. Cyanobacteria. Cambridge: Academic Press; 2019. pp. 145–171.

  • 72.

    Meulenbroek EM, Peron Cane C, Jala I, Iwai S, Moolenaar GF, Goosen N, et al. UV damage endonuclease employs a novel dual-dinucleotide flipping mechanism to recognize different DNA lesions. Nucleic Acids Res. 2013;41:1363–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 73.

    Richardson EJ, Bacigalupe R, Harrison EM, Weinert LA, Lycett S, Vrieling M, et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat Ecol Evol. 2018;2:1468–78.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 74.

    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 75.

    Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480:241–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 76.

    Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet. 2018;19:1–17.

    Article 
    CAS 

    Google Scholar
     

  • 77.

    Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci USA. 2016;113:5658–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 78.

    Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA. 1999;96:3801–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 79.

    Pál C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet. 2005;37:1372–5.

    PubMed 
    Article 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *