CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Kohsaka Y, Yamaguchi E, Kitayama T. Anionic alternating copolymerization of α-arylacrylates with methyl methacrylate: effect of monomer sequence on fluorescence. J Polym Sci Part A-Polym Chem. 2014;52:2806–14.

    CAS 

    Google Scholar
     

  • 2.

    Yamada B, Kobatake S. Radical polymerization, co-polymerization, and chain transfer of α-substituted acrylic esters. Prog Polym Sci. 1994;19:1089–152.

    CAS 

    Google Scholar
     

  • 3.

    Kodaira T, Liu QQ, Urushisaki M. Cyclopolymerization 24. Cyclopolymerizability of an unconjugated triene with functional groups with no homopolymerization tendency: radical polymerizations of N,N-diallyl-2-(methoxycarbonyl)allylamine. Macromol Chem Phys. 1997;198:3089–104.

    CAS 

    Google Scholar
     

  • 4.

    Habaue S, Uno T, Okamoto Y. Stereospecific anionic polymerization of ethyl α-(1-pyrrolidinylmethyl)acrylate. Macromolecules. 1997;30:3125–6.

    CAS 

    Google Scholar
     

  • 5.

    Yamada B, Konosu O. Control of branched structure of radical polymer by addition-fragmentation chain transfer – preparation of star polymer. Kobunshi Ronbunshu. 1997;54:723–30.

    CAS 

    Google Scholar
     

  • 6.

    Onen A, Yagci Y. The effect of the heteroatom moiety of allylic salts on the addition fragmentation initiation of cationic polymerization. Macromole Chem Phys. 2001;202:1950–4.

    CAS 

    Google Scholar
     

  • 7.

    Yilmaz F, Sudo A, Endo T. Allyl sulfonium salt as a novel initiator for active cationic polymerization of epoxide by shooting with radicals species. J Polym Sci Part A-Polym Chem. 2010;48:4178–83.

    CAS 

    Google Scholar
     

  • 8.

    Kashman Y, Fishelson L, Ne’eman I. N-acyl-2-methylene-β-alanine methyl esters from the sponge Fasciospongia cavernosa. Tetrahedron. 1973;29:3655–7.

    CAS 

    Google Scholar
     

  • 9.

    Yunker MB, Scheuer PJ. α-oxygenated fatty acids occurring as amides of 2-methylene-β-alanine in a marine sponge. Tetrahed Lett. 1978;19:4651–2.


    Google Scholar
     

  • 10.

    Holm A, Scheuer PJ. Synthesis of α-methylene-β-alanine and one of its naturally occurring α-ketomides. Tetrahed Lett. 1980;21:1125–8.

    CAS 

    Google Scholar
     

  • 11.

    Kohsaka Y, Matsumoto Y, Kitayama T. α-(Aminomethyl)acrylate: polymerization and spontaneous post-polymerization modification of beta-amino acid ester for a pH/temperature-responsive material. Polym Chem. 2015;6:5026–9.

    CAS 

    Google Scholar
     

  • 12.

    Kohsaka Y, Kitaura T, Kitayama T. Precise synthesis of stereoregular polymethacrylates with end-functionality. Kobunshi Ronbunshu. 2015;72:385–94.

    CAS 

    Google Scholar
     

  • 13.

    Kitaura T, Kitayama T. Anionic polymerization of methyl methacrylate with the aid of Lithium trimethylsilanolate (Me3SiOLi) – superior control of isotacticity and molecular weight. Macromol Rapid Commun. 2007;28:1889–93.

    CAS 

    Google Scholar
     

  • 14.

    Nishiura T, Abe Y, Kitayama T. Syndiotactic-specific polymerization of methyl methacrylate with tert-butyllithium/trialkylaluminum in dichloromethane. Polym Bull. 2011;66:917–23.

    CAS 

    Google Scholar
     

  • 15.

    Kitayama T, Nakagawa O, Kishiro S, Nishiura T, Hatada K. Control of main-chain stereostructure of graft polymers via stereospecific anionic copolymerization of syndiotactic poly(methyl methacrylate) macromonomer having methacryloyl function with methacrylate monomers. Polym J. 1993;25:707–20.

    CAS 

    Google Scholar
     

  • 16.

    Usuki N, Satoh K, Kamigaito M. Synthesis of isotactic-block-syndiotactic poly(methyl methacrylate) via stereospecific living anionic polymerizations in combination with metal-halogen exchange, halogenation, and click reactions. Polymers. 2017;9:723.

    PubMed Central 

    Google Scholar
     

  • 17.

    Usuki N, Satoh K, Kamigaito M. Synthesis of Syndiotactic macrocyclic poly(methyl methacrylate) via transformation of the growing terminal in stereospecific anionic polymerization. Macromol Chem Phys. 2017;218:1700041.


    Google Scholar
     

  • 18.

    Usuki N, Okura H, Satoh K, Kamigaito M. Synthesis and stereocomplexation of pmma-based star polymers prepared by a combination of stereospecific anionic polymerization and crosslinking radical polymerization. J Polym Sci Part A-Polym Chem. 2018;56:1123–7.

    CAS 

    Google Scholar
     

  • 19.

    Kohsaka Y, Kurata T, Kitayama T. End-functional stereoregular poly(methyl methacrylate) with clickable C=C bonds: facile synthesis and thiol-ene reaction. Polym Chem. 2013;4:5043–7.

    CAS 

    Google Scholar
     

  • 20.

    Kohsaka Y, KurataT, Yamamoto K, Ishihara S, Kitayama T. Synthesis and post-polymerization reaction of end-clickable stereoregular polymethacrylates via termination of stereospecific living anionic polymerization. Polym Chem. 2015;6:1078–108.

    CAS 

    Google Scholar
     

  • 21.

    Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36.

    CAS 

    Google Scholar
     

  • 22.

    Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem. 2014;5:4820–70.

    CAS 

    Google Scholar
     

  • 23.

    Kohsaka Y, Yamamoto K, Kitayama T. Stereoregular poly(methyl methacrylate) with double-clickable omega-end: synthesis and click reaction. Polym Chem. 2015;6:3601–7.

    CAS 

    Google Scholar
     

  • 24.

    Kohsaka Y, Ishihara S, Kitayama T. Termination of living anionic polymerization of butyl acrylate with alpha-(chloromethyl) acrylate for end-functionalization and application to the evaluation of monomer reactivity. Macromol Chem Phys. 2015;216:1534–9.

    CAS 

    Google Scholar
     

  • 25.

    Okamoto Y, Habaue S, Uno T, Baraki H. Stereospecific polymerization of alpha-substituted acrylates. Macromol Symp. 2000;157:209–16.

    CAS 

    Google Scholar
     

  • 26.

    Habaue S, Yamada H, Uno T, Okamoto Y. Stereospecific polymerization of benzyl α-(alkoxymethyl) acrylates. J Polym Sci Part A-Polym Chem. 1997;35:721–6.

    CAS 

    Google Scholar
     

  • 27.

    Uno T, Habaue S, Okamoto Y. Stereospecific polymerization of alpha-(menthoxymethyl)acrylate. Enantiomer. 2000;5:29–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Kohsaka Y, Yamamoto K, Suzawa K, Kitayama T. Synthesis of isotactic poly[α-(hydroxymethyl)acrylate] by anionic polymerization of the protected monomer. Polym Bull. 2017;74:1935–48.

    CAS 

    Google Scholar
     

  • 29.

    Kohsaka Y, Matsumoto., Zhang TY, Matsuhashi Y, Kitayama T. α-Exomethylene lactone possessing acetal-ester linkage: polymerization and postpolymerization modification for water-soluble polymer. J Polym Sci Part A-Polym Chem. 2016;54:955–61.

    CAS 

    Google Scholar
     

  • 30.

    Vargas JS, Zilliox JG, Rempp P, Franta E. Cationic synthesis of macromers. Polym Bull. 1980;3:83–89.

    CAS 

    Google Scholar
     

  • 31.

    Kohsaka Y, Koyama Y, Takata T. Graft polyrotaxanes: a new class of graft copolymers with mobile graft chains. Angew Chem Int Ed. 2011;50:10417–20.

    CAS 

    Google Scholar
     

  • 32.

    Kohsaka Y, Nagatsuka N. End-reactive poly(tetrahydrofuran) for functionalization and graft copolymer synthesis via a conjugate substitution reaction. Polym J. 2020;52:75–81.

    CAS 

    Google Scholar
     

  • 33.

    Burgess FJ, Cunliffe AV, Richards DH, Thompson D. Organic halides as cationic initiators. Polymer. 1978;19:334–40.

    CAS 

    Google Scholar
     

  • 34.

    Kohsaka Y, Hagiwara K, Ito K. Polymerization of α-(halomethyl)acrylates through sequential nucleophilic attack of dithiols using a combination of addition-elimination and click reactions. Polym Chem. 2017;8:976–9.

    CAS 

    Google Scholar
     

  • 35.

    Kohsaka Y, Miyazaki T, Hagiwara K. Conjugate substitution and addition of alpha-substituted acrylate: a highly efficient, facile, convenient, and versatile approach to fabricate degradable polymers by dynamic covalent chemistry. Polym Chem. 2018;9:1610–7.

    CAS 

    Google Scholar
     

  • 36.

    Mathias LJ, Dickerson CW. Acrylate-containing oligo(ether ester) cross-linking agents with controlled molecular-weights via end-group termination. Macromolecules. 1991;24:2048–53.

    CAS 

    Google Scholar
     

  • 37.

    Mathias LJ, Kusefoglu SH, Kress AO, Lee S, Wright JR, Culberson DA, Warren SC, Warren RM, Huang S, Lopez DR, Ingram JE, Dickerson CW, Jeno M, Halley RJ, Colletti RF, Cei G, Geiger CC. Multifunctional acrylate monomers, dimers and oligomers – applications from contact-lenses to wood-polymer composites. Makromol Chem-Macrom Symp. 1991;51:153–67.

    CAS 

    Google Scholar
     

  • 38.

    Ji SH, Bruchmann B, Klok HA. Exploring the scope of the baylis-hillman reaction for the synthesis of side-chain functional polyesters. Macromol Chem Phys. 2011;212:2612–8.

    CAS 

    Google Scholar
     

  • 39.

    Ji SH, Bruchmann B, Klok HA. Synthesis of side-chain functional polyesters via baylis-hillman polymerization. Macromolecules. 2011;44:5218–26.

    CAS 

    Google Scholar
     

  • 40.

    Robert T, Friebel S. Itaconic acid – a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 2016;18:2922–34.

    CAS 

    Google Scholar
     

  • 41.

    Tang XY, Hong M, Falivene L, Caporaso L, Cavallo L, Chen E-YX. The quest for converting biorenewable bifunctional alpha-methylene-gamma-butyrolactone into degradable and recyclable polyester: controlling vinyl-addition/ring-opening/cross-linking pathways. J Am Chem Soc. 2016;138:14326–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Hong M, Chen E-YX. Coordination ring-opening copolymerization of naturally renewable alpha-methylene-gamma-butyrolactone into unsaturated polyesters. Macromolecules. 2014;47:3614–24.

    CAS 

    Google Scholar
     

  • 43.

    Kohsaka Y, Hiramatsu A. Synthesis and properties of polyethers containing 1,3-butadiene skeleton in the backbone. Chem Lett. 2019;48:894–7.

    CAS 

    Google Scholar
     

  • 44.

    Nicolaou KC, Montagnon T, Snyder SA. Tandem reactions, cascade sequences, and biomimetic strategies in total synthesis. Chem Commun. 2003;39:551–64.


    Google Scholar
     

  • 45.

    Tietze LF. Domino reactions in organic synthesis. Chem Rev. 1996;96:115–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Kakuchi R. Multicomponent reactions in polymer synthesis. Angew Chem Int Ed. 2014;53:46–48.

    CAS 

    Google Scholar
     

  • 47.

    Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polym J. 2019;51:945–53.

    CAS 

    Google Scholar
     

  • 48.

    Koyama Y, Gudeangadi PG. One-pot synthesis of alternating peptides exploiting a new polymerization technique based on Ugi’s 4CC reaction. Chem Commun. 2017;53:3846–9.

    CAS 

    Google Scholar
     

  • 49.

    Xu YC, Ren WM, Zhou H, Gu GG, Lu XB. Functionalized polyesters with tunable degradability prepared by controlled ring-opening (co)polymerization of lactones. Macromolecules. 2017;50:3131–42.

    CAS 

    Google Scholar
     

  • 50.

    Xu YC, Zhou H, Sun XY, Ren WM, Lu XB. Crystalline polyesters from CO2 and 2-butyne via alpha-methylene-beta-butyrolactone intermediate. Macromolecules. 2016;49:5782–7.

    CAS 

    Google Scholar
     

  • 51.

    Kohsaka Y, Yamashita M, Matsuhashi Y, Yamashita S. Synthesis of poly(conjugated ester)s by ring-opening polymerization of cyclic hemiacetal ester bearing acryl skeleton. Eur Polym J. 2019;120:109185.

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *