CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Angelici, F. M. & Luiselli, L. Distribution and status of the Apennine hare Lepus corsicanus in continental Italy and Sicily. Oryx 35, 245–249 (2001).


    Google Scholar
     

  • 2.

    Trocchi, V. & Riga, F. I lagomorfi in Italia. Linee guida per la conservazione e la gestione (ed. Trocchi, V. & Riga, F) 107–110 (Ministero delle Politiche Agricole e Forestali–Istituto Nazionale Fauna Selvatica, 2005).

  • 3.

    Lo Valvo, M. Conservazione di Lepus corsicanus De Winton, 1898 e stato delle conoscenze (ed. de Filippo et al.) 89–95 (IGF Publishing, 2007).

  • 4.

    Mori, E., Menchetti, M., Mazza, G. & Scalisi, M. A new area of occurrence of an endemic Italian hare inferred by camera trapping. Boll. Mus. Civ. Sci. Nat. Torino. 30, 123–130 (2014).


    Google Scholar
     

  • 5.

    Amori, G. & Castiglia, R. Mammal endemism in Italy: A review. Biogeographia 33, 19–31 (2018).


    Google Scholar
     

  • 6.

    De Winton, W. E. On the hares of Western Europe and North Africa. J. Nat. Hist. 1, 149–158 (1898).


    Google Scholar
     

  • 7.

    Miller, G. S. Catalogue of the Mammals of Western Europe (exclusive of Russia) in the Collection of the British Museum 15–1019 (Trustees of the British Museum,1912).

  • 8.

    Palacios, F. Systematic of the indigenous hares of Italy traditionally identified as Lepus europaeus Pallas, 1778 (Mammalia: Leporidae). Bonn. Zool. Beitr. 46, 59–91 (1996).


    Google Scholar
     

  • 9.

    Riga, F., Trocchi, V., Randi, E. & Toso, S. Morphometric differentiation between the Italian hare (Lepus corsicanus De Winton, 1898) and the European brown hare (Lepus europaeus Pallas, 1778). J. Zool. 253, 241–252 (2001).


    Google Scholar
     

  • 10.

    Pierpaoli, M., Riga, F., Trocchi, V. & Randi, E. Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol. Ecol. 8, 1805–1817 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Alves, P. C., Ferrand, N., Suchentrunk, F. & Harris, D. J. Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. Mol. Phylogenet. Evol. 27, 70–80 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Wu, C. et al. Molecular phylogenetics and biogeography of Lepus in Eastern Asia based on mitochondrial DNA sequences. Mol. Phylogenet. Evol. 37, 45–61 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Alves, P. C. et al. Evidence for genetic similarity of two allopatric European hares (Lepus corsicanus and L. castroviejoi) inferred from nuclear DNA sequences. Mol. Phylogenet. Evol. 46, 1191–1197 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Melo-Ferreira, J. et al. Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and coalescent simulations. Syst. Biol. 61, 367–381 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Acevedo, P., Melo-Ferreira, J., Real, R. & Alves, P. C. Evidence for niche similarities in the allopatric sister species Lepus castroviejoi and Lepus corsicanus. J. Biogeogr. 41, 977–986 (2014).


    Google Scholar
     

  • 16.

    Palomo, L. J., Gisbert, J. & Blanco, J. C. Atlas y libro rojo de los mamíferos terrestres de España (ed. Palomo, L. J., Gisbert, J. & Blanco, J. C.) 479–483 (Organismo Autónomo de Parques Nacionales, 2007).

  • 17.

    Randi, E. & Riga, F. Lepus corsicanus. The IUCN Red List of Threatened Species e.T41305A2952954, https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T41305A2952954.en. (2019).

  • 18.

    Angelici, F. M., Petrozzi, F. & Galli, A. Conservazione di Lepus corsicanus De Winton, 1898 e stato delle conoscenze (ed. de Filippo et al.) 103–109 (IGF Publishing, 2007).

  • 19.

    Fulgione, D., Maselli, V., Pavarese, G., Rippa, D. & Rastogi, R. K. Landscape fragmentation and habitat suitability in endangered Italian hare (Lepus corsicanus) and European hare (Lepus europaeus) populations. Eur. J. Wildl. Res. 55, 385–396 (2009).


    Google Scholar
     

  • 20.

    Pierpaoli, M., Riga, F., Trocchi, V. & Randi, E. Hare populations in Europe: intra and interspecific analysis of mtDNA variation. Cr. Biol. 326, 80–84 (2003).


    Google Scholar
     

  • 21.

    Kasapidis, P., Suchentrunk, F., Magoulas, A. & Kotoulas, G. The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations. Mol. Phylogenet. Evol. 34, 55–66 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Angelici, F. M. & Luiselli, L. Body size and altitude partitioning of the hares Lepus europaeus and L. corsicanus living in sympatry and allopatry in Italy. Wildlife Biol. 13, 251–257 (2007).


    Google Scholar
     

  • 23.

    de Filippo, G., Caliendo, M. F., Fulgione, D., Fusco, L. & Troisi, S. R. Conservazione di Lepus corsicanus De Winton, 1898 e stato delle conoscenze (ed. de Filippo et al.) 97–102 (IGF Publishing, 2007).

  • 24.

    Buglione, M. et al. A pilot study on the application of DNA metabarcoding for non-invasive diet analysis in the Italian hare. Mamm. Biol. 88, 31–42 (2018).


    Google Scholar
     

  • 25.

    Buglione, M. et al. Who is who? High Resolution Melting analysis to discern between hare species using non-invasive sampling. Conserv. Genet. Resour https://doi.org/10.1007/s12686-020-01153-9 (2020).

    Article 

    Google Scholar
     

  • 26.

    Mengoni, C., Mucci, N. & Randi, E. Genetic diversity and no evidences of recent hybridization in the endemic Italian hare (Lepus corsicanus). Conserv. Genet. 16, 477–489 (2015).


    Google Scholar
     

  • 27.

    Ferreira, C. M. et al. Genetic non-invasive sampling (gNIS) as a cost-effective tool for monitoring elusive small mammals. E. J. Wild. Res. 4, 46 (2018).


    Google Scholar
     

  • 28.

    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Angelici, F. M., Petrozzi, F. & Galli, A. The Apennine hare Lepus corsicanus in Latium, Central Italy: a habitat suitability model and comparison with its current range. Hystrix 21, 177–182 (2010).


    Google Scholar
     

  • 30.

    Scarselli, D. et al. Coming home: Reintroduction of Italian hares (Lepus corsicanus) in the Elba Island. Mamm. Biol. 81, 15–15 (2016).


    Google Scholar
     

  • 31.

    Mori, E. et al. Safety or satiety? Spatiotemporal behaviour of a threatened herbivore. Mamm. Biol. 100, 49–61 (2020).


    Google Scholar
     

  • 32.

    de Filippo, G., Fulgione, D. Fusco, L. & Troisi, S.R. Conservazione di Lepus corsicanus De Winton, 1898 e stato delle conoscenze (ed. de Filippo et al.) 123–136 (IGF Publishing, 2007).

  • 33.

    Freschi, P. et al. Diet of the Italian hare (Lepus corsicanus) in a semi-natural landscape of southern Italy. Mammalia 79, 51–59 (2015).


    Google Scholar
     

  • 34.

    Adhikari, D., Barik, S. K. & Upadhaya, K. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol. Eng. 40, 37–43 (2012).


    Google Scholar
     

  • 35.

    Gelviz-Gelvez, S. M., Pavón, N. P., Illoldi-Rangel, P. & Ballesteros-Barrera, C. Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecol. Eng. 74, 302–309 (2015).


    Google Scholar
     

  • 36.

    Begon, M., Townsend, C. R. & Harper, J. L. Ecology: from individuals to ecosystems. (Blackwell Publishing, 2006).

  • 37.

    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 38.

    Franklin, J. Mapping species distributions: spatial inference and prediction 1–318 (Cambridge University Press, Cambridge, 2010).


    Google Scholar
     

  • 39.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend, P. A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).


    Google Scholar
     

  • 40.

    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).

    PubMed 

    Google Scholar
     

  • 41.

    Tao, Y., Börger, L. & Hastings, A. Dynamic range size analysis of territorial animals: An optimality approach. Am. Nat. 4, 460–474 (2016).


    Google Scholar
     

  • 42.

    Fernando, P., Vidya, T. N. C., Rajapakse, C., Dangolla, A. & Melnick, D. J. Reliable noninvasive genotyping: fantasy or reality?. J. Hered. 94, 115–123 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).

    PubMed 

    Google Scholar
     

  • 44.

    Ball, M. C. et al. Characterization of target nuclear DNA from faeces reduces technical issues associated with the assumptions of low-quality and quantity template. Conserv. Genet. 8, 577–586 (2007).


    Google Scholar
     

  • 45.

    Brinkman, T. J., Schwartz, M. K., Person, D. K., Pilgrim, K. L. & Hundertmark, K. J. Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conserv. Genet. 11, 1547–1552 (2010).

    CAS 

    Google Scholar
     

  • 46.

    Bisi, F. et al. A Space use patterns of mountain hare (Lepus timidus) on the Alps. Eur. J. Wildl. Res. 57, 305–312 (2011).


    Google Scholar
     

  • 47.

    Toschi, A. Mammalia: lagomorpha, rodentia, carnivora, artiodactyla, cetacea 1–648 (Calderini, 1965).

  • 48.

    Zuccagni-Orlandini, A. Corografia fisica, storica e statistica dell’Italia e delle sue isole, corredata di un atlante, di mappe geografiche e topografiche, e di altre tavole illustrative 1–755 (Firenze, presso gli editori, 1835).

  • 49.

    Trocchi, V. & Riga, F. Piano d’azione nazionale per la Lepre italica (Lepus corsicanus) (ed. Trocchi, V. & Riga, F.) 1–97 (Ministero delle Politiche Agricole e Forestali–Istituto Nazionale Fauna Selvatica, 2001).

  • 50.

    Pietri, C. Range and status of the Italian hare Lepus corsicanus in Corsica. Hystrix 26, 1–3 (2015).


    Google Scholar
     

  • 51.

    Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Ando, H. et al. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol. Evol. 3, 4057–4069 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Ingerson-Mahar, J. M. Relating diet and morphology of the head, mandibles and proventriculus in adult carabid beetles. PhD. Thesis, Rutgers University Graduate School New Brunswick (2014).

  • 54.

    Holechek, J. L., Vavra, M. & Pieper, R. D. Botanical composition of determination of range herbivore diets. A review Grazing animals, forage resources. Rangel. Ecol. Manag. 35, 309–315 (1982).


    Google Scholar
     

  • 55.

    Hirakawa, H. Coprophagy in leporids and other mammalian herbivores. Mamm. Rev. 31, 61–80 (2001).


    Google Scholar
     

  • 56.

    Naumova, E. I., Zharova, G. K., Chistova, T. Y. & Kuznetsova, T. A. The effect of coprophagy on the size of plant fibers in the digestive tract of hares Lepus europaeus and L. timidus (Lagomorpha, Leporidae). Biol. Bull. 42, 426–431 (2015).


    Google Scholar
     

  • 57.

    Sokos, C. et al. Conservation considerations for a management measure: An integrated approach to hare rearing and release. Environ. Manag. 55, 19–30 (2015).

    ADS 

    Google Scholar
     

  • 58.

    León-Ruiz, E., Alcázar, P., Domínguez-Vilches, E. & Galán, C. Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts?. Aerobiologia 27, 37–50 (2011).


    Google Scholar
     

  • 59.

    Rizzardini, G. et al. Feeding preferences in dry season of the Italian hare (Lepus corsicanus) in two sites of Corsica. Eur. J. Wild. Res. 65, 43 (2019).


    Google Scholar
     

  • 60.

    Hanski, I. Patch-occupancy dynamics in fragmented landscapes. Trends Ecol. Evol. 9, 131–135 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    McCullough, D. R. Metapopulation and wildlife conservation (Island Press, 1996).

  • 62.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Mech, S. G. & Hallett, J. G. Evaluating the effectiveness of corridors: a genetic approach. Conserv. Biol. 15, 467–474 (2001).


    Google Scholar
     

  • 64.

    Fortebraccio, M., Riga, F., Bottaro, R. & Donnini, S. Take it easy: scat detection dog and conservation of Italian hare (Lepus corsicanus) Hystrix 29, 66–67 (2018).

  • 65.

    Wasser, S. K., Houston, C. S., Koehler, G. M., Cadd, G. G. & Fain, S. R. Techniques for application of faecal DNA methods to field studies of Ursids. Mol. Ecol. 6, 1091–1097 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation Project 2019), https://www.qgis.org.

  • 67.

    Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G. & Pryor, R. J. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49, 853–860 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Lo Valvo, M., Barera, A. & Seminara, S. Biometria e status della Lepre appenninica (Lepus corsicaus, de Winton) in Sicilia. Nat. Sicil. 21, 67–74 (1997).


    Google Scholar
     

  • 69.

    Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista rossa IUCN dei vertebrati italiani 50 (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).

  • 70.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).


    Google Scholar
     

  • 71.

    Baldwin, R. A. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866 (2009).

    ADS 

    Google Scholar
     

  • 72.

    Monterroso, P., Brito, J. C., Ferreras, P. & Alves, P. C. Spatial ecology of the European wildcat in a Mediterranean ecosystem: Dealing with small radio-tracking datasets in species conservation. J. Zool. 279, 27–35 (2009).


    Google Scholar
     

  • 73.

    Tinoco, B. A., Astudillo, P. X., Latta, S. C. & Graham, C. H. Distribution, ecology and conservation of an endangered Andean hummingbird: The Violet-throated Metaltail (Metallura baroni). Bird. Conserv. Int. 19, 63–76 (2009).


    Google Scholar
     

  • 74.

    Linnell, M. A., Davis, R. J., Lesmeister, D. B. & Swingle, J. K. Conservation and relative habitat suitability for an arboreal mammal associated with old forest. Forest. Ecol. Manag. 402, 1–11 (2017).


    Google Scholar
     

  • 75.

    Ortega-Huerta, M. A. & Peterson, A. T. Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Rev. Mex. Biodivers. 79, 205–216 (2008).


    Google Scholar
     

  • 76.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).


    Google Scholar
     

  • 77.

    Papeş, M. & Gaubert, P. Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers. Distrib. 13, 890–902 (2007).


    Google Scholar
     

  • 78.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).


    Google Scholar
     

  • 79.

    Elith, J. & Leathwick, J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 13, 265–275 (2007).


    Google Scholar
     

  • 80.

    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).


    Google Scholar
     

  • 81.

    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).


    Google Scholar
     

  • 82.

    Yokota, Y., Kawata, T., Iida, Y., Kato, A. & Tanifuji, S. Nucleotide sequences of the 5.8 S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Mol. Evol. 29, 294–301 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Aceto, S., Caputo, P., Cozzolino, S., Gaudio, L. & Moretti, A. Phylogeny and evolution of orchis and allied genera based on ITS DNA variation: Morphological gaps and molecular continuity. Mol. Phylogenet. Evol. 13, 67–76 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Frediani, M. & Caputo, P. Phylogenetic relationships among annual and perennial species of the genus Cicer as inferred from ITS sequences of nuclear ribosomal DNA. Biol. Plant. 49, 47–52 (2005).

    CAS 

    Google Scholar
     

  • 85.

    Coissac, E. OligoTag: a program for designing sets of tags for next-generation sequencing of multiplexed samples. Methods Mol. Biol. 888, 13–31 (2012).

    PubMed 

    Google Scholar
     

  • 86.

    Harris, J. K. et al. Comparison of normalization methods for construction of large, multiplex amplicon pools for next-generation sequencing. Appl. Environ. Microbiol. 76, 3863–3868 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    D’Amore, R. et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 17, 55 (2016).


    Google Scholar
     

  • 88.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Luo, R. et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 2047–2217 (2012).


    Google Scholar
     

  • 90.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).


    Google Scholar
     

  • 91.

    Freitas, T. A. K., Li, P. E., Scholz, M. B. & Chain, P. S. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res. 43, 69 (2015).


    Google Scholar
     

  • 92.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Lassmann, T., Hayashizaki, Y. & Daub, C. O. SAMStat: monitoring biases in next generation sequencing data. Bioinformatics 27, 130–131 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Mollot, G. et al. Cover cropping alters the diet of arthropods in a banana plantation: a metabarcoding approach. PLoS ONE 9, e93740 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Hammer, Ø, Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).


    Google Scholar
     

  • 97.

    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 98.

    Kruskal, H. W. & Wallis, A. W. Use of ranks in one-criterion variance analysis. J. Am. Statist. Ass. 47, 583–621 (1952).

    MATH 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *