CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) in China. JAMA 323, 1239–1242 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Wichmann, D. et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann. Intern. Med. https://doi.org/10.7326/M20-2003 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Hon, K. L. et al. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet 361, 1701–1703 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Viner, R. M. & Whittaker, E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet 395, 1741–1743 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Marks, M. & Marks, J. L. Viral arthritis. Clin. Med. 16, 129–134 (2016).


    Google Scholar
     

  • 7.

    Friedman, N. et al. Human coronavirus infections in Israel: epidemiology, clinical symptoms and summer seasonality of HCoV-HKU1. Viruses 10, 515 (2018).

    PubMed Central 

    Google Scholar
     

  • 8.

    Guan, W.-J. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Christian, M. D., Poutanen, S. M., Loutfy, M. R., Muller, M. P. & Low, D. E. Severe acute respiratory syndrome. Clin. Infect. Dis. 38, 1420–1427 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Li, S. et al. Symptom combinations associated with outcome and therapeutic effects in a cohort of cases with SARS. Am. J. Chin. Med. 34, 937–947 (2006).

    PubMed 

    Google Scholar
     

  • 11.

    Memish, Z. A., Perlman, S., Van Kerkhove, M. D. & Zumla, A. Middle East respiratory syndrome. Lancet 395, 1063–1077 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Russel, C. D. et al. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395, 473–475 (2020).


    Google Scholar
     

  • 13.

    Peiris, J. S. M. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767–1772 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Stockman, L. J., Bellamy, R. & Garner, P. SARS: systematic review of treatment effects. PLoS Med. 3, e343 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Joo, Y. B., Lim, Y.-H., Kim, K.-J., Park, K.-S. & Park, Y.-J. Respiratory viral infections and the risk of rheumatoid arthritis. Arthritis Res. Ther. 21, 199 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Pedersen, K. B. et al. Dynamics of ADAM17-mediated shedding of ACE2 applied to pancreatic islets of male db/db mice. Endocrinology 156, 4411–4425 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Liu, J. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 92, 491–494 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Katsura, H. et al. IL-1 and TNFα contribute to the inflammatory niche to enhance alveolar regeneration. Stem Cell Rep. 12, 657–666 (2019).

    CAS 

    Google Scholar
     

  • 20.

    Starr, M. et al. Age-associated increase in cytokine production during systemic inflammation — II: the role of IL-1β in age-dependent IL-6 upregulation in adipose tissue. J. Gerontol. 70, 1508–1515 (2015).

    CAS 

    Google Scholar
     

  • 21.

    Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Schett, G., Sticherling, M. & Neurath, M. F. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol. 20, 271–272 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Yoshikawa, T. et al. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J. Virol. 83, 3039–3048 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Zhang, X. et al. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-κB. Virology 365, 324–335 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Law, H. K. et al. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106, 2366–2374 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Josset, L. et al. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio 4, e00165-13 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Ryzhakov, G. et al. IL-17 boosts proinflammatory outcome of antiviral response in human cells. J. Immunol. 187, 5357–5362 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Rauber, S. et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23, 938–944 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Chen, Z. et al. TH2 and eosinophil responses suppress inflammatory arthritis. Nat. Commun. 7, 11596 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Sarzi-Puttini, P. et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin. Exp. Rheumatol. 38, 337–342 (2020).

    PubMed 

    Google Scholar
     

  • 32.

    Henderson, L. A. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. https://doi.org/10.1002/art.41285 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Stebbing, J. et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 20, 400–402 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Channappanavar, R. & Perlman, S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 39, 529–539 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Pedersen, S. F. & Ho, Y. C. SARS-CoV-2: a storm is raging. J. Clin. Invest. 130, 2202–2205 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Xu, X. et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl Acad. Sci. USA 117, 10970–10975 (2020).

    CAS 

    Google Scholar
     

  • 37.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04380961 (2020).

  • 38.

    US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04324021 (2020).

  • 39.

    US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04348448 (2020).

  • 40.

    Qian, Y. et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome–coronavirus. Am. J. Respir. Cell Mol. Biol. 48, 742–748 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Tobinick, E. TNF-α inhibition for potential therapeutic modulation of SARS coronavirus infection. Curr. Med. Res. Opin. 20, 39–40 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Feldmann, M. et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet 395, 1407–1409 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Hussell, T., Pennycook, A. & Openshaw, P. J. Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur. J. Immunol. 31, 2566–2573 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Monti, S. et al. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann. Rheum. Dis. 79, 667–668 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Chinese Clinical Trial Registry. ChiCTR.org http://www.chictr.org.cn/showprojen.aspx?proj=49889 (2020).

  • 46.

    Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Richardson, P. et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395, e30–e31 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    US Department of Health and Human Services. Coronavirus (COVID-19). NIH.gov https://www.nih.gov/health-information/coronavirus (2020).

  • 49.

    Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04341116 (2020).

  • 51.

    Blumentals, W. A. et al. Rheumatoid arthritis and the incidence of influenza and influenza-related complications: a retrospective cohort study. BMC Musculoskelet. Disord. 13, 158 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    An, P. et al. Protection of 318 inflammatory bowel disease patients from the outbreak and rapid spread of COVID-19 infection in Wuhan, China. https://ssrn.com/abstract=3543590 (Social Science Research Network, 2020).

  • 53.

    Norsa, L. et al. Uneventful course in IBD patients during SARS-CoV-2 outbreak in northern Italy. Gastroenterology https://doi.org/10.1053/j.gastro.2020.03.062 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Velazquez-Salinas, L. et al. The role of interleukin-6 during viral infection. Front. Microbiol. 10, 1057 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Fleming, S. Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Vaccines 4, 23 (2016).

    PubMed Central 

    Google Scholar
     

  • 56.

    Bechman, K. et al. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology 58, 1755–1766 (2019).

    PubMed 

    Google Scholar
     

  • 57.

    Kelesidis, T., Mastoris, I., Metsini, A. & Tsiodras, S. How to approach and treat viral infections in ICU patients. BMC Infect. Dis. 14, 321 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Tan, L. et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal. Transduct. Targ. Ther. 5, 33 (2020).

    CAS 

    Google Scholar
     

  • 59.

    Favalli, E. G., Biggioggero, M., Maioli, G. & Caporali, R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30262-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Praveen, D., Chowdary, P. R. & Aanandhi, M. V. Baricitinib, a Janus kinase inhibitor, not an ideal option for management of COVID 19. Int. J. Antimicrob. Agents 55, 105967 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Thanh, Le. T. et al. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 19, 305–306 (2020).


    Google Scholar
     

  • 62.

    Meroni, P. L., Zavaglia, D. & Girmenia, C. Vaccinations in adults with rheumatoid arthritis in an era of new disease-modifying anti-rheumatic drugs. Clin. Exp. Rheumatol. 36, 317–328 (2018).

    PubMed 

    Google Scholar
     

  • 63.

    Marotto, D. & Sarzi-Puttini, P. What is the role of rheumatologists in the era of COVID-19? Autoimmun. Rev. 19, 102539 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Hollander, J. E. & Sites, F. D. The transition from reimagining to recreating health care is now. NEJM Catalyst https://doi.org/10.1056/CAT.20.0093 (2020).

    Article 

    Google Scholar
     

  • 65.

    Spinelli, F. R., Ceccarelli, F., Di Franco, M. & Conti, F. To consider or not antimalarials as a prophylactic intervention in the SARS-CoV-2 (Covid-19) pandemic. Ann. Rheum. Dis. 79, 666–667 (2020).

    PubMed 

    Google Scholar
     

  • 66.

    European Medicines Agency. COVID-19: chloroquine and hydroxychloroquine only to be used in clinical trials or emergency use programmes. EMA.europa.EU https://www.ema.europa.eu/en/news/covid-19-chloroquine-hydroxychloroquine-only-be-used-clinical-trials-emergency-use-programmes (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *