CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Pitt, A. M. & Hill, D. P. Long-period earthquakes in the Long-Valley Caldera region eastern California. Geophys. Res. Lett.21, 1679–1682 (1994).

    ADS 

    Google Scholar
     

  • 2.

    White, R. A. in Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines (eds Newhall, C. G. & Punongbayan, R. S.) 307–326 (Univ. Washington Press, 1996).

  • 3.

    Pitt, A. M., Hill, D. P., Walter, S. W. & Johnston, M. J. S. Mid-crustal, long-period earthquakes beneath northern California volcanic areas. Seismol. Res. Lett.73, 144–152 (2002).


    Google Scholar
     

  • 4.

    Power, J. A., Stihler, S. D., White, R. A. & Moran, S. C. Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989–2002. J. Volcanol. Geotherm. Res.138, 243–266 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Nichols, M. L., Malone, S. D., Moran, S. C., Thelen, W. A. & Vidale, J. E. Deep long-period earthquakes beneath Washington and Oregon volcanoes. J. Volcanol. Geotherm. Res.200, 116–128 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Aso, N., Ohta, K. & Ide, S. Tectonic, volcanic, and semi-volcanic deep low-frequency earthquakes in western Japan. Tectonophysics600, 27–40 (2013).

    ADS 

    Google Scholar
     

  • 7.

    Shapiro, N. M. et al. Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer. Nat. Geosci.10, 442–445 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Hensch, M. et al. Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geophys. J. Int216, 2025–2036 (2019).

    ADS 

    Google Scholar
     

  • 9.

    Wech, A. G., Thelen, W. A. & Thomas, A. M. Deep long-period earthquakes generated by second boiling beneath Mauna Kea volcano. Science368, 775–779 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Chouet, B. A. Long-period volcano seismicity: its source and use in eruption forecasting. Nature380, 309–316 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Aso, N. & Tsai, V. C. Cooling magma model for deep volcanic long-period earthquakes. J. Geophys. Res.119, 8442–8456 (2014).

    ADS 

    Google Scholar
     

  • 12.

    Chouet, B. A. & Matoza, R. S. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J. Volcanol. Geotherm. Res.252, 108–175 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Shapiro, N. M., Campillo, M., Kaminski, E., Vilotte, J. ‐P. & Jaupart, C. Low‐frequency earthquakes and pore pressure transients in subduction zones. Geophys. Res. Lett.45, 11,083–11,094 (2018).


    Google Scholar
     

  • 14.

    Lensky, N. G., Niebo, R. W., Holloway, J. R., Lyakhovsky, V. & Navon, O. Bubble nucleation as a trigger for xenolith entrapment in mantle melts. Earth Planet. Sci. Lett.245, 278–288 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Lyakhovsky, V., Hurwitz, S. & Navon, O. Bubble growth in rhyolitic melts: experimental and numerical investigations. Bull. Volcanol.58, 19–32 (1996).

    ADS 

    Google Scholar
     

  • 16.

    Gonnermann, H. M. & Manga, M. Nonequilibrium magma degassing: results from modeling of the ca. 1340 AD eruption of Mono Craters, California. Earth Planet. Sci. Lett.238, 1–16 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Shapiro, N. M. et al. Understanding Kamchatka’s extraordinary volcano cluster. EOS 98, https://doi.org/10.1029/2017eo071351 (2017).

  • 18.

    Senyukov, S. L. Forecasting of the eruptions of volcanoes Klyuchevskoy and Bezymianny at Kamchatka [in Russian] (Lambert Academic, 2013).

  • 19.

    Senyukov, S. L. et al. Studies in the activity of Klyuchevskoi volcano by remote sensing techniques between January 1, 2001 and July 31, 2005, Volcanol. Seismol3, 50–59 (2009).


    Google Scholar
     

  • 20.

    Droznin, D. V. et al. Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of continuous seismic records. Geophys. J. Int.203, 1001–1010 (2015).

    ADS 

    Google Scholar
     

  • 21.

    Gorelchik, V. I., Garbuzova, V. T. & Storcheus, A. V. Deep-seated volcanic processes beneath Klyuchevskoi volcano as inferred from seismological data. J. Volcanol. Seismol.6, 21–34 (2004).


    Google Scholar
     

  • 22.

    Khubunaya, S. A. & Sobolev, A. V. Primary melts of calc–alkaline magnesian basalts from Klyuchevskoy Volcano, Kamchatka, Dokl. Akad. Nauk360, 100–102 (1998).


    Google Scholar
     

  • 23.

    Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N. & Khubunaya, S. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet. Sci. Lett.255, 53–69 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Mironov, N. L. & Portnyagin, M. V. H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine. Russian Geol. Geophys.52, 1353–1367 (2011).

    ADS 

    Google Scholar
     

  • 25.

    Portnyagin, M. et al. Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts. Earth Planet. Sci. Lett.517, 95–105 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Stolper, E. & Walker, D. Melt density and the average composition of basalt. Contrib. Mineral. Petrol.74, 7–12 (1980).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res. Solid Earth100(B6), 9761–9788 (1995).

    CAS 

    Google Scholar
     

  • 28.

    Shea, T. Bubble nucleation in magmas: a dominantly heterogeneous process? J. Volcanol. Geotherm. Res.343, 155–170 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Shaw, H. R. Viscosities of magmatic silicate liquids; an empirical method of prediction. Am. J. Sci.272, 870–893 (1972).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Sable, J. E., Houghton, B. F., Del Carlo, P. & Coltelli, M. Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J. Volcanol. Geotherm. Res.158, 333–354 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Aki, K. & Chouet, B. Origin of coda waves: source, attenuation, and scattering effects. J. Geophys. Res.80, 3322–3342 (1975).

    ADS 

    Google Scholar
     

  • 32.

    Allard, P. et al. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature351, 387–391 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Edmonds, M. New geochemical insights into volcanic degassing. Philos. Trans. R. Soc. A366, 4559–4579 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Burton, M. R., Sawyer, G. M. & Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem.75, 323–354 (2013).

    CAS 

    Google Scholar
     

  • 35.

    Hartley, M. E., Maclennan, J., Edmonds, M. & Thordarson, T. Reconstructing the deep CO2 degassing ehavior of large basaltic fissure eruptions. Earth Planet. Sci. Lett.393, 120–131 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA112, E3997–E4006 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Taran, Y. et al. Gas emissions from volcanoes of the Kuril Island arc (NW Pacific): geochemistry and fluxes. Geochem. Geophys. Geosyst.19, 1859–1880 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Aiuppa, A. et al. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep.9, 5442 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Zhang, Y., Ni, H. Diffusion of H, C, and O Components in Silicate Melts. Reviews in Mineralogy and Geochemistry.72, 171–225 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Burgisser, A., Alletti, M. & Scaillet B. D-Compress
    https://vhub.org/resources/3791 (2015).

  • 41.

    Hirth, G., Pound, G. M. & St Pierre, G. R. Bubble nucleation. Metall. Trans.1, 939–945 (1970).

    CAS 

    Google Scholar
     

  • 42.

    Navon, O. & Lyakhovsky, V. Vesiculation processes in silicic magmas. Geol. Soc., Lond. Spec. Pub145, 27–50, https://doi.org/10.1144/GSL.SP.1996.145.01.93 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Crank, J. Free and moving boundary problems (Oxford Science Publications, 1987).

  • 44.

    Mooney, D. D. & Swift, R. J. A course in mathematical modeling (Cambridge University Press, 1999).

  • 45.

    Danyushevsky, L. V. & Plechov, P. Petrolog3: Integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst.12, Q07021 (2011).

    ADS 

    Google Scholar
     

  • 46.

    Bergal-Kuvikas, O. et al. A petrological and geochemical study on time-series samples from Klyuchevskoy volcano, Kamchatka arc. Contrib. Mineral. Petrol.172, 35 (2017).

    ADS 

    Google Scholar
     

  • 47.

    Bergal-Kuvikas, O. Geochemical studies of volcanic rocks from the northern part of Kuril-Kamchatka arc: tectonic and structural constraints on the origin and evolution of arc magma. Doctoral dissertation. P.190. (Hokkaido University, 2015).

  • 48.

    Auer, S., Bindeman, I., Wallace, P., Ponomareva, V. & Portnyagin, M. The origin of hydrous, high-delta O-18 voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoi volcano, Kamchatka, Russia. Contrib. Mineral. Petrol.157, 209–230 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Aki, K. & Richards, P. G. Quantitative seismology (University Science Books, 2002).

  • 50.

    Levin, V., Droznina, S., Gavrilenko, M., Carr, M. J. & Senyukov, S. Seismically active subcrustal magma source of the Klyuchevskoy volcano in Kamchatka, Russia. Geology42, 983–986 (2014).

    ADS 

    Google Scholar
     

  • 51.

    Droznina, S. et al. S-wave velocity model for several regions of the Kamchatka Peninsula from the cross correlations of ambient seismic noise. Izvestiya Phys. Solid Earth53, 341–352 (2017).

    ADS 

    Google Scholar
     

  • 52.

    Eshelby, J. D. The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A252, 561–569 (1959).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 53.

    Shi, Z. & Ben-Zion, Y. Seismic radiation from tensile and shear point dislocations between similar and dissimilar solids. Geophys. J. Int179, 444–458 (2009).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *