CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Baum, J. A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Zhu, F., Xu, J., Palli, R., Ferguson, J. & Palli, S. R. Ingested RNA interference for managing the populations of the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag. Sci. 67, 175–182 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Campbell, E. M., Budge, G. E. & Bowman, A. S. Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase. Parasit. Vectors 3, 73 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Zha, W. et al. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insect Nilaparvata lugens. PLoS ONE 6, e20504 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    SanMiguel, K. & Scott, J. G. The next generation of insecticides: DsRNA is stable as a foliar-applied insecticide. Pest Manag. Sci. 72, 801–809 (2016).

    CAS 

    Google Scholar
     

  • 6.

    Zotti, M. et al. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 74, 1239–1250 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Ivashuta, S. et al. Environmental RNAi in herbivorous insects. RNA 21, 840–850 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Terenius, O. et al. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57, 231–245 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Wynant, N., Santos, D. & VandenBroeck, J. Biological Mechanisms Determining the Success of RNA Interference in Insects. Int. Rev. Cell Mol. Biol. 312(312), 139–167 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Christiaens, O., Swevers, L. & Smagghe, G. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53, 307–314 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Wang, K. et al. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochem. Mol. Biol. 77, 1–9 (2016).

    PubMed 

    Google Scholar
     

  • 12.

    Yamaguchi, J., Mizoguchi, T. & Fujiwara, H. siRNAs induce efficient RNAi response in Bombyx mori embryos. PLoS ONE 6, e25469 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Kolliopoulou, A. & Swevers, L. Functional analysis of the RNAi response in ovary-derived silkmoth Bm5 cells. Insect Biochem. Mol. Biol. 43, 654–663 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Ren, D., Cai, Z., Song, J., Wu, Z. & Zhou, S. DsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust Locusta migratoria. Insect Mol. Biol. 23, 175–184 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Shukla, J. N. et al. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 13, 656–669 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Zhang, X., Zhang, J. & Zhu, K. Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 19, 683–693 (2010).

    PubMed 

    Google Scholar
     

  • 17.

    RameshKumar, D. et al. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Biol. Macromol. 86, 89–95 (2016).

    CAS 

    Google Scholar
     

  • 18.

    Kaneda, M. M., Sasaki, Y., Lanza, G. M., Milbrandt, J. & Wickline, S. A. Mechanisms of nucleotide trafficking during siRNA delivery to endothelial cells using perfluorocarbon nanoemulsions. Biomaterials 31, 3079–3086 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Li-Byarlay, H. et al. RNA interference knockdown of DNA methyltransferase 3 affects gene alternative splicing in the honey bee. Proc. Natl. Acad. Sci. U. S. A. 110, 12750–12755 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Thairu, M. W. et al. Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species. Insect Mol. Biol. 26, 356–368 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Gillet, F. et al. Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests. Front. Physiol. 8, 256 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Das, S., Debnath, N., Cui, Y., Unrine, J. & Palli, S. R. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: a comparative analysis. ACS Appl. Mater. Interfaces 7, 19530–19535 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Whyard, S., Singh, A. D. & Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39, 824–832 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Taning, C. N. T. et al. Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. J. Pest Sci. 89, 803–814 (2016).


    Google Scholar
     

  • 25.

    Kumar, S., Rani, R., Dilbaghi, N., Tankeshwar, K. & Kim, K. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Bates, K. & Kostarelos, K. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliv. Rev. 65, 2023–2033 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Yang, K. et al. Polyamidoamine dendrimer-functionalized carbon nanotubes-mediated GFP gene transfection for HeLa cells: effects of different types of carbon nanotubes. J. Biomed. Mater. Res. Part A 99, 231–239 (2011).


    Google Scholar
     

  • 28.

    Allegri, M. et al. Toxicity determinants of multi-walled carbon nanotubes: the relationship between functionalization and agglomeration. Toxicol. Rep. 3, 230–243 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Al-Jamal, K. T. et al. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3, 2627–2635 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Masotti, A. et al. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomed. Nanotechnol. Biol. Med. 12, 1511–1522 (2016).

    CAS 

    Google Scholar
     

  • 31.

    Celluzzi, A. et al. Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells. Int. J. Nanomed. 13, 1–18 (2018).

    CAS 

    Google Scholar
     

  • 32.

    Richards, S. et al. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949–955 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Tomoyasu, Y. & Denell, R. E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev. Genes Evol. 214, 575–578 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Bucher, G., Scholten, J. & Klingler, M. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 12, R85–R86 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Siebert, K. S., Lorenzen, M. D., Brown, S. J., Park, Y. & Beeman, R. W. Tubulin superfamily genes in Tribolium castaneum and the use of a tubulin promoter to drive transgene expression. Insect Biochem. Mol. Biol. 38, 749–755 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Edwards, C. et al. RNA-interference in the cat flea, Ctenocephalides felis: approaches for sustained gene knockdown and evidence of involvement of Dicer-2 and Argonaute2. Int. J. Parasitol. 48, 993–1002 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Huvenne, H. & Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227–235 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Joga, M. R., Zotti, M. J., Smagghe, G. & Christiaens, O. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front. Physiol. 7, 553 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Thompson, J. D. et al. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther. 22, 255–264 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Christensen, J. et al. Metabolism studies of unformulated internally [H-3]-labeled short interfering RNAs in mices. Drug Metab. Dispos. 41, 1211–1219 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    McCarroll, J., Baigude, H., Yang, C. & Rana, T. M. Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug. Chem. 21, 56–63 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Knorr, E., Bingsohn, L., Kanost, M. R. & Vilcinskas, A. Tribolium castaneum as a model for high-throughput RNAi screening. Yellow Biotechnol. II Insect Biotechnol. Plant Prot. Ind. 136, 163–178 (2013).

    CAS 

    Google Scholar
     

  • 43.

    Linz, D. M., Clark-Hachtel, C. M., Borras-Castells, F. & Tomoyasu, Y. Larval RNA interference in the red flour beetle Tribolium castaneum. J. Vis. Exp. https://doi.org/10.3791/52059 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Lu, C. & Mains, P. Mutations of a redundant alpha-tubulin gene affect Caenorhabditis elegans early embryonic cleavage via MEI-1/katanin-dependent and -independent pathways. Genetics 170, 115–126 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Liu, B., Campo, E. M. & Bossing, T. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms. PLoS ONE 9, e88681 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Liu, X., Vinson, D., Abt, D., Hurt, R. H. & Rand, D. M. Differential toxicity of carbon nanomaterials in drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ. Sci. Technol. 43, 6357–6363 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Machado, N. M., Lopes, J. C., Saturnino, R. S., Fagan, E. B. & Nepomuceno, J. C. Lack of mutagenic effect by multi-walled functionalized carbon nanotubes in the somatic cells of Drosophila melanogaster. Food Chem. Toxicol. 62, 355–360 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Noordhoek, J. W., Verweij, R. A., van Gestel, C. A. M., van Straalen, N. M. & Roelofs, D. No effect of selected engineered nanomaterials on reproduction and survival of the springtail Folsomia candida. Environ. Sci. Nano 5, 564–571 (2018).

    CAS 

    Google Scholar
     

  • 49.

    Daish, T., Mills, K. & Kumar, S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev. Cell 7, 909–915 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Quinn, L. et al. Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 22, 3568–3579 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Vecchio, G. et al. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS ONE 7, e29980 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Neves, V. et al. Uptake and release of double-walled carbon nanotubes by mammalian cells. Adv. Funct. Mater. 20, 3272–3279 (2010).

    CAS 

    Google Scholar
     

  • 53.

    Costa, P. M., Bourgognon, M., Wang, J. T. & Al-Jamal, K. T. Functionalised carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J. Control. Release 241, 200–219 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Wang, M., Yu, S., Wang, C. & Kong, J. Tracking the endocytic pathway of recombinant protein toxin delivered by multiwalled carbon nanotubes. ACS Nano 4, 6483–6490 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Mu, Q., Broughton, D. L. & Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 9, 4370–4375 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Lord, J. C., Hartzer, K., Toutges, M. & Oppert, B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J. Microbiol. Methods 80, 219–221 (2010).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *