CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Chubb, C. & Sperling, G. Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. J. Opt. Soc. Am. A https://doi.org/10.1364/josaa.5.001986 (1988).

    MathSciNet 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Cavanagh, P. Short-range vs long-range motion: Not a valid distinction. Spat. Vis. 5, 303–309 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Schofield, A. J. & Georgeson, M. A. Sensitivity to contrast modulation: The spatial frequency dependence of second-order vision. Vision Res. 43, 243–259 (2003).

    Article 

    Google Scholar
     

  • 4.

    El-Shamayleh, Y. & Anthony Movshon, J. Neuronal responses to texture-defined form in macaque visual area V2. J. Neurosci. 31, 8543–8555 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Larsson, J., Landy, M. S. & Heeger, D. J. Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J. Neurophysiol. 95, 862–881 (2006).

    Article 

    Google Scholar
     

  • 6.

    Cavanagh, P. & Mather, G. Motion: The long and short of it. Spat. Vis. 4, 103–129 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Sperling, G., Chubb, C., Solomon, J. A. & Lu, Z. L. Full-wave and half-wave processes in second-order motion and texture. Ciba Found. Symp. https://doi.org/10.1002/9780470514610.ch15 (2007).

    Article 

    Google Scholar
     

  • 8.

    Sutter, A., Sperling, G. & Chubb, C. Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Res. https://doi.org/10.1016/0042-6989(94)00196-S (1995).

    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Armstrong, V., Maurer, D. & Lewis, T. L. Sensitivity to first- and second-order motion and form in children and adults. Vision Res. https://doi.org/10.1016/j.visres.2009.08.016 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Ashida, H., Lingnau, A., Wall, M. B. & Smith, A. T. fMRI adaptation reveals separate mechanisms for first-order and second-order motion. J. Neurophysiol. https://doi.org/10.1152/jn.00723.2006 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Dumoulin, S. O., Baker, C. L., Hess, R. F. & Evans, A. C. Cortical specialization for processing first- and second-order motion. Cereb. Cortex 13, 1375–1385 (2003).

    Article 

    Google Scholar
     

  • 12.

    Ellemberg, D. et al. Longer VEP latencies and slower reaction times to the onset of second-order motion than to the onset of first-order motion. Vision Res. https://doi.org/10.1016/S0042-6989(03)00006-3 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Calvert, J., Manahilov, V., Simpson, W. A. & Parker, D. M. Human cortical responses to contrast modulations of visual noise. Vision Res. https://doi.org/10.1016/j.visres.2005.02.012 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Manahilov, V., Simpson, W. A. & Calvert, J. Why is second-order vision less efficient than first-order vision?. Vision Res. https://doi.org/10.1016/j.visres.2005.06.004 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Campbell, F. W. & Robson, J. G. Application of Fourier analysis to the visibility of gratings. J. Physiol. https://doi.org/10.1113/jphysiol.1968.sp008574 (1968).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Campbell, F. W. Why do we measure contrast sensitivity?. Behav. Brain Res. https://doi.org/10.1016/0166-4328(83)90154-7 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Pelli, D. G. & Bex, P. Measuring contrast sensitivity. Vision Res. 90, 10–14 (2013).

    Article 

    Google Scholar
     

  • 18.

    Rovamo, J., Franssila, R. & Näsänen, R. Contrast sensitivity as a function of spatial frequency, viewing distance and eccentricity with and without spatial noise. Vision Res. 32, 631–637 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Rovamo, J., Luntinen, O. & Näsänen, R. Modelling the dependence of contrast sensitivity on grating area and spatial frequency. Vision Res. 33, 2773–2788 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Rovamo, J., Mustonen, J. & Näsänen, R. Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Res. 34, 1301–1314 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Virsu, V. & Rovamo, J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res. 37, 475–494 (1979).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Braddick, O. & Atkinson, J. Development of human visual function. Vision Res. 51, 1588–1609 (2011).

    Article 

    Google Scholar
     

  • 23.

    Brown, A. M. & Lindsey, D. T. Contrast insensitivity: The critical immaturity in infant visual performance. Optom. Vis. Sci. https://doi.org/10.1097/OPX.0b013e3181a72980 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kiorpes, L. The puzzle of visual development: Behavior and neural limits. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2937-16.2016 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Atkinson, J., Braddick, O. & Moar, K. Development of contrast sensitivity over the first 3 months of life in the human infant. Vision Res. 17, 1037–1044 (1977).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Banks, M. S. & Salapatek, P. Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. Investig. Ophthalmol. Vis. Sci. 17, 361–365 (1978).

    CAS 

    Google Scholar
     

  • 27.

    Swanson, W. H. & Birch, E. E. Infant spatiotemporal vision: Dependence of spatial contrast sensitivity on temporal frequency. Vision Res. 30, 1033–1048 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Peterzell, D. H., Werner, J. S. & Kaplan, P. S. Individual differences in contrast sensitivity functions: Longitudinal study of 4-, 6- and 8-month-old human infants. Vision Res. 35, 961–979 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Atkinson, J., French, J. & Braddick, O. Contrast sensitivity function of preschool children. Br. J. Ophthalmol. 65, 525–529 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Beazley, L. D., Illingworth, D. J., Jahn, A. & Greer, D. V. Contrast sensitivity in children and adults. Br. J. Ophthalmol. 64, 863–866 (1980).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Bradley, A. & Freeman, R. D. Contrast sensitivity in children. Vision Res. 22, 953–959 (1982).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Gwiazda, J., Bauer, J., Thorn, F. & Held, R. Development of spatial contrast sensitivity from infancy to adulthood: Psychophysical data. Optom. Vis. Sci. 74, 785–789 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    JE Richman S Lyons 1994 A forced choice procedure for evaluation of contrast sensitivity function in preschool children J. Am. Optom. Assoc.

  • 34.

    Scharre, J. E., Cotter, S. A., Block, S. S. & Kelly, S. A. Normative contrast sensitivity data for young children. Optom. Vis. Sci. https://doi.org/10.1097/00006324-199011000-00007 (1990).

    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Leat, S. J., Yadav, N. K. & Irving, E. L. Development of visual acuity and contrast sensitivity in children. Journal of Optometry https://doi.org/10.3921/joptom.2009.19 (2009).

    Article 

    Google Scholar
     

  • 36.

    Bertone, A., Hanck, J., Cornish, K. M. & Faubert, J. Development of static and dynamic perception for luminance-defined and texture-defined information. NeuroReport https://doi.org/10.1097/WNR.0b013e3282f48401 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Ellemberg, D., Lewis, T. L., Hong Liu, C. & Maurer, D. Development of spatial and temporal vision during childhood. Vision Res. https://doi.org/10.1016/S0042-6989(98)00280-6 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Dunn, L. & Dunn, L. PPVT-III: Peabody Picture Vocabulary Test (American Guidance Service Circle Pines, 1997).

  • 39.

    Dunn, L., Dunn, L. & Thériault-Whalen, C. Echelle de vocabulaire en images Peabody: séroe de planches (1993).

  • 40.

    Bertone, A., Mottron, L., Jelenic, P. & Faubert, J. Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain 128, 2430–2441 (2005).

    Article 

    Google Scholar
     

  • 41.

    Tang, Y. et al. Processing deficits of motion of contrast-modulated gratings in anisometropic amblyopia. PLoS ONE https://doi.org/10.1371/journal.pone.0113400 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Harvey, L. O. Efficient estimation of sensory thresholds with ML-PEST. Spat. Vis. https://doi.org/10.1163/156856897X00159 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Separate mechanisms with similar behaviour. Schofield, A. J. & Georgeson, M. A. Sensitivity to modulations of luminance and contrast in visual white noise. Vision Res. 39, 2697–2716 (1999).

    Article 

    Google Scholar
     

  • 44.

    Hutchinson, C. V. & Ledgeway, T. Sensitivity to spatial and temporal modulations of first-order and second-order motion. Vision Res. 46, 324–335 (2006).

    Article 

    Google Scholar
     

  • 45.

    Van Den Boomen, C., van der Smagt, M. J. & Kemner, C. Keep your eyes on development: The behavioral and neurophysiological development of visual mechanisms underlying form processing. Front. Psychiatry 3, 1–20 (2012).


    Google Scholar
     

  • 46.

    Allen, H. A., Ledgeway, T. & Hess, R. F. Poor encoding of position by contrast-defined motion. Vision Res. https://doi.org/10.1016/j.visres.2004.03.025 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Ledgeway, T. & Hess, R. F. Failure of direction identification for briefly presented second-order motion stimuli: Evidence for weak direction selectivity of the mechanisms encoding motion. Vision Res. https://doi.org/10.1016/S0042-6989(02)00106-2 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Bertone, A., Mottron, L., Jelenic, P. & Faubert, J. Motion perception in autism: A ‘complex’ issue. J. Cogn. Neurosci. 15, 218–225 (2003).

    Article 

    Google Scholar
     

  • 49.

    Habak, C. & Faubert, J. Larger effect of aging on the perception of higher-order stimuli. Vision Res. 40, 943–950 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Kogan, C. S. et al. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome. Neurology https://doi.org/10.1212/01.WNL.0000142987.44035.3B (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Rivest, J. B., Jemel, B., Bertone, A., McKerral, M. & Mottron, L. Correction: Luminance- and texture-defined information processing in school-aged children with autism. PLoS ONE https://doi.org/10.1371/annotation/a4b3468f-cb36-4833-85f9-93a7cba7c36a (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Perreault, A., Habak, C., Lepore, F., Mottron, L. & Bertone, A. Behavioral evidence for a functional link between low- and mid-level visual perception in the autism spectrum. Neuropsychologia https://doi.org/10.1016/j.neuropsychologia.2015.09.022 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Bertone, A., Hanck, J., Kogan, C., Chaudhuri, A. & Cornish, K. Using perceptual signatures to define and dissociate condition-specific neural etiology: Autism and fragile X syndrome as model conditions. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-010-1109-5 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Bertone, A., Hanck, J., Kogan, C., Chaudhuri, A. & Cornish, K. Associating neural alterations and genotype in autism and fragile X syndrome: Incorporating perceptual phenotypes in causal modeling. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-010-1110-z (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Guy, J., Mottron, L., Berthiaume, C. & Bertone, A. The developmental trajectory of contrast sensitivity in autism spectrum disorder. Autism Res. https://doi.org/10.1002/aur.1579 (2016).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *