CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Hou, L., Martin, L. D., Zhou, Z., Feduccia, A. & Zhang, F. A diapsid skull in a new species of the primitive bird Confuciusornis. Nature 399, 679 (1999).

    Article 
    CAS 

    Google Scholar
     

  • 2.

    Zhou, Z. & Farlow, J. O. Flight capability and habits of Confuciusornis. In New Perspectives on the Origin and Early Evolution Of Birds; Proceedings of the International Symposium in Honor of John. H Ostrom (eds Gauthier, J. & Gall, L. F.) (Yale University Press, 2001).

  • 3.

    Elzanowski, A., Peters, D. S. & Mayr, G. Cranial morphology of the early Cretaceous bird Confuciusornis. J. Vertebr. Paleontol. 38, e1439832 (2018).

    Article 

    Google Scholar
     

  • 4.

    Falk, A., O’Connor, J., Wang, M. & Zhou, Z. On the preservation of the beak in Confuciusornis (Aves: Pygostylia). Diversity 11, 212 (2019).

    Article 

    Google Scholar
     

  • 5.

    Zhang, F., Zhou, Z. & Benton, M. J. A primitive confuciusornithid bird from China and its implications for early avian flight. Sci. China Ser. D Earth Sci. 51, 625–639 (2008).

    Article 

    Google Scholar
     

  • 6.

    Chiappe L. M., Qingjin M. Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs (John Hopkins University Press, 2016).

  • 7.

    Zhou, Z. & Zhang, F. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can. J. Earth Sci. 40, 731–747 (2003).

    Article 

    Google Scholar
     

  • 8.

    Zinoviev, A. V. An attempt to reconstruct the lifestyle of confuciusornithids (Aves, Confuciusornithiformes). Paleontol. J. 43, 444–452 (2009).

    Article 

    Google Scholar
     

  • 9.

    Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).

    Article 

    Google Scholar
     

  • 10.

    Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 11.

    Wang, S. et al. Heterochronic truncation of odontogenesis in theropod dinosaurs provides insight into the macroevolution of avian beaks. Proc. Natl Acad. Sci. U.S.A. 114, 10930–10935 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 12.

    Wang, S., Stiegler, J., Wu, P. & Chuong, C.-M. Tooth vs. beak: the evolutionary developmental control of the avian feeding apparatus. In Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) (Bulletin of the American Museum of Natural History, 2020).

  • 13.

    Wang, M., O’Connor, J. & Zhou, Z. A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia). Vertebr. Palasiat. 10, 1–37 (2018).


    Google Scholar
     

  • 14.

    Wang, M. & Zhou, Z. A new confuciusornithid (Aves: Pygostylia) from the early Cretaceous increases the morphological disparity of the Confuciusornithidae. Zool. J. Linn. Soc. 185, 417–430 (2018).

    Article 

    Google Scholar
     

  • 15.

    Genbrugge, A. et al. Structural tissue organization in the beak of Java and Darwin’s finches. J. Anat. 221, 383–393 (2012).

    Article 

    Google Scholar
     

  • 16.

    Lee, N. et al. Hierarchical multiscale structure–property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. J. R. Soc. Interface 11, 20140274 (2014).

    Article 

    Google Scholar
     

  • 17.

    Heiss, E., Plenk, H. Jr. & Weisgram, J. Microanatomy of the palatal mucosa of the semiaquatic Malayan box turtle, Cuora amboinensis, and functional implications. Anat. Rec. 291, 876–885 (2008).

    Article 

    Google Scholar
     

  • 18.

    Francillon-Vieillot, H. et al. Microstructure and mineralization of vertebrate skeletal tissues. In: Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (eds Carter, J. G.) (American Geophysical Union, 1989).

  • 19.

    Davis, P. G. & Briggs, D. E. G. The impact of decay and disarticulation on the preservation of fossil birds. Palaios 13, 3–13 (1998).

    Article 

    Google Scholar
     

  • 20.

    Brand, L. R., Hussey, M. & Taylor, J. Decay and disarticulation of small vertebrates in controlled experiments. J. Taphon. 1, 69–95 (2003).


    Google Scholar
     

  • 21.

    Dumont, E. R., Grosse, I. R. & Slater, G. J. Requirements for comparing the performance of finite element models of biological structures. J. Theor. Biol. 256, 96–103 (2009).

    Article 
    CAS 

    Google Scholar
     

  • 22.

    Soons, J. et al. Is beak morphology in Darwin’s finches tuned to loading demands? PLOS ONE 10, e0129479 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 23.

    Attard, M. R. G. et al. Moa diet fits the bill: virtual reconstruction incorporating mummified remains and prediction of biomechanical performance in avian giants. Proc. R. Soc. B Biol. Sci. 283, 20152043 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Adams, N. F., Rayfield, E. J., Cox, P. G., Cobb, S. N. & Corfe, I. J. Functional tests of the competitive exclusion hypothesis for multituberculate extinction. R. Soc. Open Sci. 6, 181536 (2019).

    Article 

    Google Scholar
     

  • 25.

    Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the early Cretaceous of China. Nature 418, 405–409 (2002).

    Article 
    CAS 

    Google Scholar
     

  • 26.

    Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2018).

    Article 

    Google Scholar
     

  • 27.

    Wu, P., Jiang, T. X., Shen, J. Y., Widelitz, R. B. & Chuong, C. M. Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution. Dev. Dyn. 235, 1400–1412 (2006).

    Article 

    Google Scholar
     

  • 28.

    Hieronymus, T. L. & Witmer, L. M. Homology and evolution of avian compound rhamphothecae. Auk 127, 590–604 (2010).

    Article 

    Google Scholar
     

  • 29.

    Button, K. A. Soft Tissue Reconstruction and Ecomorphology of Beaks in Extant and Extinct Theropod Dinosaurs (North Carolina State University, 2018).

  • 30.

    Parkes, K. C. & Clark, G. A. An additional character linking ratites and tinamous, and an interpretation of their monophyly. Condor 68, 459–471 (1966).

    Article 

    Google Scholar
     

  • 31.

    Urano, Y. et al. How does the curvature of the upper beak bone reflect the overlying rhinotheca morphology? J. Morphol. 279, 636–647 (2018).

    Article 

    Google Scholar
     

  • 32.

    Kaye, T. G. et al. Laser-stimulated fluorescence in paleontology. PLOS ONE 10, e0125923 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 33.

    Wang, X. L. et al. Basal paravian functional anatomy illuminated by high-detail body outline. Nat. Commun. 8, 14576 (2017).

    Article 

    Google Scholar
     

  • 34.

    Holliday, C. M. New insights into dinosaur jaw muscle anatomy. Anat. Rec. 292, 1246–1265 (2009).

    Article 

    Google Scholar
     

  • 35.

    Elzanowski, A. Biology of basal birds and the origin of avian flight. In: Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing (eds Zhou, Z. & Zhang, F.) (Science Press, 2002).

  • 36.

    Navalón, G. Reconstructing the Palaeobiology of Confuciusornis and Other Confuciusornithiformes (University of Bristol, 2014).

  • 37.

    Bright, J. A. A review of paleontological finite element models and their validity. J. Paleontol. 88, 760–769 (2014).

    Article 

    Google Scholar
     

  • 38.

    Marcé-Nogué, J., DeMiguel, D., Fortuny Terricabras, J., de Esteban-Trivigno, S. & Gil Espert, L. Quasi-homothetic transformation for comparing the mechanical performance of planar models in biological research. Palaeontol. Electron. 16, 1–15 (2013).


    Google Scholar
     

  • 39.

    Morales-García, N. M., Burgess, T. D., Hill, J. J., Gill, P. G. & Rayfield, E. J. The use of extruded finite-element models as a novel alternative to tomography-based models: a case study using early mammal jaws. J. R. Soc. Interface 16, 20190674 (2019).

    Article 

    Google Scholar
     

  • 40.

    Cuff, A. R., Bright, J. A. & Rayfield, E. J. Validation experiments on finite element models of an ostrich (Struthio camelus) cranium. Peerj 3, e1294 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 41.

    Van Gestel, W. & Jansen, J. Skull characteristics of Merops orientalis. https://skullsite.com/skullpage/merops-orientalis-little-green-bee-eater/ (2020).

  • 42.

    Van Gestel, W. & Jansen, J. Skull characteristics of Chrysolophus pictus. https://skullsite.com/skullpage/chrysolophus-pictus-golden-pheasant/ (2020).

  • 43.

    Van Gestel, W. & Jansen, J. Skull characteristics of Alcedo atthis. https://skullsite.com/skullpage/alcedo-atthis-common-kingfisher/ (2020).

  • 44.

    Van Gestel, W. & Jansen, J. Skull characteristics of Lonchura malacca. https://skullsite.com/skullpage/lonchura-malacca-black-headed-munia/ (2020).

  • 45.

    Smith, B. J., Smith, S. A., Spaulding, K. A., Flammer, K. & Smallwood, J. E. The normal xeroradiographic and radiographic anatomy of the cockatiel (Nymphzcus hollandzs). Vet. Radiol. 31, 226–234 (1990).

    Article 

    Google Scholar
     

  • 46.

    Smith, B. J. & Smith, S. A. Normal xeroradiographic and radiographic anatomy of the bobwhite quail (Colinus virginianus), with reference to other galliform species. Vet. Radiol. 32, 127–134 (1991).

    Article 

    Google Scholar
     

  • 47.

    Marcé-Nogué, J., De Esteban-Trivigno, S., Püschel, T. A. & Fortuny, J. The intervals method: a new approach to analyse finite element outputs using multivariate statistics. PeerJ 5, e3793 (2017).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *