CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Alley, R. B. et al. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483–486 (1997).

    ADS 

    Google Scholar
     

  • 2.

    Thompson, L. G. et al. Holocene—late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science 246(4929), 474–477 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Park, J. et al. The 8.2 ka cooling event in coastal East Asia: high-resolution pollen evidence from southwestern Korea. Sci. Rep. 8(1), 1–9 (2018).


    Google Scholar
     

  • 4.

    Estrella-Martínez, J. et al. 8.2 ka event North Sea hydrography determined by bivalve shell stable isotope geochemistry. Sci. Rep. 9(1), 1–9 (2019).


    Google Scholar
     

  • 5.

    Dixit, Y., Hodell, D. A., Sinha, R. & Petrie, C. A. Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth Planet. Sci. Lett. 391, 16–23 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Sarkar, A. et al. Oxygen isotope in archaeological bioapatites from India: implications to climate change and decline of Bronze Age Harappan civilization. Sci. Rep. 6(1), 1–9 (2016).

    CAS 

    Google Scholar
     

  • 7.

    Kotlia, B. S., Singh, A. K., Joshi, L. M. & Bisht, K. Precipitation variability over Northwest Himalaya from 4.0 to 1.9 ka BP with likely impact on civilization in the foreland areas. J. Asian Earth Sci. 162, 148–159 (2018).

    ADS 

    Google Scholar
     

  • 8.

    Dixit, Y. et al. Intensified summer monsoon and the urbanization of Indus Civilization in northwest India. Sci. Rep. 8(1), 1–8 (2018).


    Google Scholar
     

  • 9.

    Giosan, L. et al. Neoglacial climate anomalies and the Harappan metamorphosis. Clim. Past 14(11), 1669–1686 (2018).


    Google Scholar
     

  • 10.

    Owen, L. A., Finkel, R. C. & Caffee, M. W. A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum. Quat. Sci. Rev. 21(1), 147–157 (2002).

    ADS 

    Google Scholar
     

  • 11.

    Owen, L. A. et al. Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. J. Quat. Sci. Publ. Quat. Res. Assoc. 16(6), 555–563 (2001).


    Google Scholar
     

  • 12.

    Eugster, P., Scherler, D., Thiede, R. C., Codilean, A. T. & Strecker, M. R. Rapid Last Glacial Maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: new insights from 10Be-dating of ice-polished bedrock surfaces in the Chandra Valley, NW Himalaya. Geophys. Res. Lett. 43(4), 1589–1597 (2016).

    ADS 

    Google Scholar
     

  • 13.

    Deswal, S. et al. Late Holocene Glacier Dynamics in the Miyar Basin, Lahaul Himalaya, India. Geosciences 7(3), 64 (2017).

    ADS 

    Google Scholar
     

  • 14.

    Saha, S., Sharma, M. C., Murari, M. K., Owen, L. A. & Caffee, M. W. Geomorphology, sedimentology and minimum exposure ages of streamlined subglacial landforms in the NW Himalaya, India. Boreas 45(2), 284–303 (2016).


    Google Scholar
     

  • 15.

    Orr, E. N. et al. Quaternary glaciation of the Lato Massif, Zanskar Range of the NW Himalaya. Quat. Sci. Rev. 183, 140–156 (2018).

    ADS 

    Google Scholar
     

  • 16.

    Singh, A. T. et al. Moisture sources for precipitation and hydrograph components of the Sutri Dhaka Glacier Basin, Western Himalaya. Water 11(11), 2242 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Owen, L. A. et al. Style and timing of glaciation in the Lahul Himalaya, northern India: a framework for reconstructing late Quaternary palaeoclimatic change in the western Himalaya. J. Quat. Sci. Publ. Quat. Res. Assoc. 12(2), 83–109 (1997).


    Google Scholar
     

  • 18.

    Remenda, V. H., Cherry, J. A. & Edwards, T. W. D. Isotopic composition of old groundwater from Lake Agassiz: implications for late Pleistocene climate. Science 266(5193), 1975–1978 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Dansgaard, W. Stable isotopes in precipitation. Tellus 16(4), 436–468 (1964).

    ADS 

    Google Scholar
     

  • 20.

    Merlivat, L. & Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res Oceans 84, 5029–5033 (1979).

    ADS 

    Google Scholar
     

  • 21.

    Froehlich, K., Gibson, J. J. & Aggarwal, P. K. Deuterium Excess in Precipitation and Its Climatological Significance (No. IAEA-CSP 13/P) (2002).

  • 22.

    Liu, Z. et al. Seasonal deuterium excess in Nagqu precipitation: influence of moisture transport and recycling in the middle of Tibetan Plateau. Environ. Geol. 55(7), 1501–1506 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Lide, T. et al. Westerly moisture transport to the middle of Himalaya revealed from the high deuterium excess. Chin. Sci. Bull. 50(10), 1026–1030 (2005).


    Google Scholar
     

  • 24.

    Debret, M. et al. Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing. Quat. Sci. Rev. 28(25–26), 2675–2688 (2009).

    ADS 

    Google Scholar
     

  • 25.

    Draxler, R. R. & Hess, G. D. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag. 47, 295–308 (1998).


    Google Scholar
     

  • 26.

    Swart, P. K. Comparisons between the oxygen isotopic composition of pore water and Globigerinoidesruber in sediments from Hole 817C. In Proceedings of Scientific Results, ODP, Leg 133, Northeast Australian Margin 481–487 (ODP, Texas A&M University, College Station, 1993).

  • 27.

    Gimmi, T., Waber, H. N., Gautschi, A., & Rübel, A. Stable water isotopes in pore water of Jurassic argillaceous rocks as tracers for solute transport over large spatial and temporal scales. Water Resour. Res. 43(4), W04410. https://doi.org/10.1029/2005WR004774 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Hendry, M. J. & Wassenaar, L. I. Implications of the distribution of δD in pore waters for groundwater flow and the timing of geologic events in a thick aquitard system. Water Resour. Res. 35(6), 1751–1760 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Van der Kamp, G., Van Stempvoort, D. R. & Wassenaar, L. I. The radial diffusion method: 1. Using intact cores to determine isotopic composition, chemistry, and effective porosities for groundwater in aquitards. Water Resour. Res. 32(6), 1815–1822 (1996).

    ADS 

    Google Scholar
     

  • 30.

    Rawat, S., Gupta, A. K., Sangode, S. J., Srivastava, P. & Nainwal, H. C. Late Pleistocene-Holocene vegetation and Indian summer monsoon record from the Lahaul, northwest Himalaya, India. Quat. Sci. Rev. 114, 167–181 (2015).

    ADS 

    Google Scholar
     

  • 31.

    Wünnemann, B. et al. Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quatern. Sci. Rev. 29(9–10), 1138–1155 (2010).

    ADS 

    Google Scholar
     

  • 32.

    Rasmussen, S. O., Vinther, B. M., Clausen, H. B. & Andersen, K. K. Early Holocene climate oscillations recorded in three Greenland ice cores. Quat. Sci. Rev. 26, 1907–1914. https://doi.org/10.1016/j.quascirev.2007.06.015 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Fleitmann, D. et al. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleooceanography. https://doi.org/10.1029/2007PA001519 (2008).

    Article 

    Google Scholar
     

  • 34.

    Oster, J. L. et al. Climate response to the 8.2 ka event in coastal California. Sci. Rep. 7(1), 1–9 (2017).

    CAS 

    Google Scholar
     

  • 35.

    Park, J. et al. Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula. Sci. Rep. 9(1), 1–16 (2019).


    Google Scholar
     

  • 36.

    Kotlia, B. S. et al. Late Quaternary climatic changes in the eastern Kumaun Himalaya, India, as deduced from multi-proxy studies. Quat. Int. 213(1–2), 44–55 (2010).


    Google Scholar
     

  • 37.

    Demske, D., Tarasov, P. E., Wünnemann, B. & Riedel, F. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279(3–4), 172–185 (2009).


    Google Scholar
     

  • 38.

    Fierz, C. R. L. A. et al. The International Classificationi for Seasonal Snow on the Groun, Vol. 5 (UNESCO/IHP, Paris, 2009).


    Google Scholar
     

  • 39.

    Lone, A. M., Achyuthan, H., Shah, R. A. & Sangode, S. J. Environmental magnetism and heavy metal assemblages in lake bottom sediments, Anchar Lake, Srinagar, NW Himalaya, India. Int. J. Environ. Res. 12(4), 489–502 (2018).

    CAS 

    Google Scholar
     

  • 40.

    Bali, R. et al. Vegetation and climate change in the temperate-subalpine belt of Himachal Pradesh since 6300 cal. yrs. BP, inferred from pollen evidence of Triloknathpalaeolake. Quat. Int. 30, 1–13 (2016).


    Google Scholar
     

  • 41.

    Thompson, L. G. et al. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau. Ann. Glaciol. 43, 61–69 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Rawat, S., Gupta, A. K., Srivastava, P., Sangode, S. J. & Nainwal, H. C. A 13,000 year record of environmental magnetic variations in the lake and peat deposits from the Chandra valley, Lahaul: implications to Holocene monsoonal variability in the NW Himalaya. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 116–127 (2015).


    Google Scholar
     

  • 43.

    Srivastava, P. et al. 8000-year monsoonal record from Himalaya revealing reinforcement of tropical and global climate systems since mid-Holocene. Sci. Rep. 7(1), 1–10 (2017).


    Google Scholar
     

  • 44.

    Phadtare, N. R. Sharp decrease in summer monsoon strength 4000–3500 calyr BP in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat. Res. 53(1), 122–129 (2000).


    Google Scholar
     

  • 45.

    Barnard, P. L., Owen, L. A. & Finkel, R. C. Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sediment. Geol. 165(3–4), 199–221 (2004).

    ADS 

    Google Scholar
     

  • 46.

    Bisht, P. et al. Pattern of Holocene glaciation in the monsoon-dominated Kosa Valley, central Himalaya, Uttarakhand, India. Geomorphology 284, 130–141 (2017).

    ADS 

    Google Scholar
     

  • 47.

    Scherler, D., Bookhagen, B., Strecker, M. R., von Blanckenburg, F. & Rood, D. Timing and extent of late Quaternary glaciation in the western Himalaya constrained by 10Be moraine dating in Garhwal, India. Quat. Sci. Rev. 29(7–8), 815–831 (2010).

    ADS 

    Google Scholar
     

  • 48.

    Possehl, G. L. The Indus Civilization: A Contemporary Perspective (Rowman Altamira, Lanham, 2002).


    Google Scholar
     

  • 49.

    Giosan, L. et al. Fluvial landscapes of the Harappan civilization. Proc. Natl. Acad. Sci 109(26), E1688–E1694 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Wright, R. P., Bryson, R. A. & Schuldenrein, J. Water supply and history: Harappa and the Beas regional survey. Antiquity 82(315), 37–48 (2008).


    Google Scholar
     

  • 51.

    Weber, S. A. Archaeobotany at Harappa: indications for change. in Indus Ethnobiology: New Perspectives from the Field 175–198 (Lexington Books, Lanham, 2003).


    Google Scholar
     

  • 52.

    Fuller, D. Q. Agricultural origins and frontiers in South Asia: a working synthesis. J. World Prehist. 20(1), 1–86 (2006).


    Google Scholar
     

  • 53.

    Bar-Matthews, M. et al. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67(17), 3181–3199 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Leipe, C., Demske, D., Tarasov, P. E. & HIMPAC Project Members. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quat. Int. 348, 93–112 (2014).


    Google Scholar
     

  • 55.

    Kumar, O., Devrani, R. & Ramanathan, A. L. Deciphering the past climate and monsoon variability from lake sediment archives of India: a review. J. Clim. Change 3(2), 11–23 (2017).


    Google Scholar
     

  • 56.

    Mandal, A., et al. Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on ChhotaShigri Glacier over 2002–2019 using in-situ measurements. J. Glaciol. (revised, in comm) (2020).

  • 57.

    Bakke, J. et al. The water tower of India in a long-term perspective—a way to reconstruct glaciers and climate in Himachal Pradesh during the last 13,000 years. J. Clim. Change 2(1), 103–112 (2016).


    Google Scholar
     

  • 58.

    von Freyberg, J., Studer, B. & Kirchner, J. W. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation. Hydrol. Earth Syst. Sci. 21, 1721–1739 (2017).

    ADS 

    Google Scholar
     

  • 59.

    Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 60.

    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79(1), 61–78 (1998).

    ADS 

    Google Scholar
     

  • 61.

    Brock, F. et al. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1), 103–112 (2010).

    CAS 

    Google Scholar
     

  • 62.

    Stuiver, M., Reimer, P. J. & Reimer, R. W. CALIB 7.1 [WWW program] at https://calib.org. Accessed 2020-4-22 (2020).

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *