CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    ADS 

    Google Scholar
     

  • 2.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    ADS 

    Google Scholar
     

  • 3.

    Wu, W. Y., Lan, C. W., Lo, M. H., Reager, J. T. & Famiglietti, J. S. Increases in the annual range of soil water storage at northern middle and high latitudes under global warming. Geophys. Res. Lett. 42, 3903–3910 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2012).

    ADS 

    Google Scholar
     

  • 5.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2013).

    ADS 

    Google Scholar
     

  • 6.

    Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    ADS 

    Google Scholar
     

  • 9.

    Lo, M.-H. & Famiglietti, J. S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 40, 301–306 (2013).

    ADS 

    Google Scholar
     

  • 10.

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    IPCC Climate Change 2007: The Physical Science Basis (eds. Solomon, S. et al.) (Cambridge University Press for the Intergovernmental Panel on Climate Change, 2007).

  • 12.

    Allen, D. M., Cannon, A. J., Toews, M. W. & Scibek, J. Variability in simulated recharge using different GCMs. Water Resour. Res. 46, W00F03 (2010).


    Google Scholar
     

  • 13.

    Crosbie, R. S. et al. Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resour. Res. 49, 3936–3951 (2013).

    ADS 

    Google Scholar
     

  • 14.

    Portmann, F., Petra, D., Stephanie, E. & Martina, F. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ. Res. Lett. 8, 024023 (2013).

    ADS 

    Google Scholar
     

  • 15.

    Habets, F. et al. Impact of climate change on the hydrogeology of two basins in northern France. Climatic Change 121, 771–785 (2013).

    ADS 

    Google Scholar
     

  • 16.

    Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 111, 3251–3256 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    McCallum, J. L., Crosbie, R. S., Walker, G. R. & Dawes, W. R. Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge. Hydrogeol. J. 18, 1625–1638 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 111, 3262–3267 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 111, 3245–3250 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    ADS 

    Google Scholar
     

  • 21.

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).


    Google Scholar
     

  • 22.

    Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 11, 491–508 (2020).

    ADS 

    Google Scholar
     

  • 23.

    Lo, M.-H. & Famiglietti, J. S. Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations. J. Geophys. Res.: Atmospheres 116, D5107 (2011).

    ADS 

    Google Scholar
     

  • 24.

    Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    ADS 

    Google Scholar
     

  • 26.

    Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Modeling Earth Syst. 3, M03001 (2011).

    ADS 

    Google Scholar
     

  • 27.

    Toure, A. M. et al. Evaluation of the snow simulations from the Community Land Model, version 4 (CLM4). J. Hydrometeorol. 17, 153–170 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Zeng, Z. et al. Impact of Earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).

    ADS 

    Google Scholar
     

  • 29.

    Fyfe, J. C. et al. Large near-term projected snowpack loss over the western United States. Nat. Commun. 8, 14996 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Mudryk, L., Kushner, P., Derksen, C. & Thackeray, C. Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett. 44, 919–926 (2017).

    ADS 

    Google Scholar
     

  • 31.

    Cheng, S., Huang, J., Ji, F. & Lin, L. Uncertainties of soil moisture in historical simulations and future projections. J. Geophys. Res.: Atmospheres 122, 2239–2253 (2017).

    ADS 

    Google Scholar
     

  • 32.

    Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 114016 (2015).

    ADS 

    Google Scholar
     

  • 33.

    Ferguson, C. R., Pan, M. & Oki, T. The effect of global warming on future water availability: CMIP5 synthesis. Water Resour. Res. 54, 7791–7819 (2018).

    ADS 

    Google Scholar
     

  • 34.

    Niu, G. Y., Yang, Z. L., Dickinson, R. E., Gulden, L. E. & Su, H. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res.: Atmospheres 112, D07103 (2007).

    ADS 

    Google Scholar
     

  • 35.

    Oleson, K. et al. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res.: Biogeosci. 113, G01021 (2008).

    ADS 

    Google Scholar
     

  • 36.

    Oleson, K. et al. Technical Description of Version 4.0 of the Community Land Model (CLM). No. NCAR/TN-478+STR) (University Corporation for Atmospheric Research, 2010).

  • 37.

    Gulden, L. E. et al. Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile?. Geophys. Res. Lett. 34, L09402 (2007).

    ADS 

    Google Scholar
     

  • 38.

    Cai, X. et al. Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res.: Atmospheres 119, 751–13,770 (2014).

    ADS 

    Google Scholar
     

  • 39.

    Lin, Y.-H., Lo, M.-H. & Chou, C. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin. Clim. Dyn. 46, 1001–1013 (2016).


    Google Scholar
     

  • 40.

    Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).

    ADS 

    Google Scholar
     

  • 41.

    Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

    ADS 

    Google Scholar
     

  • 42.

    Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).

    ADS 

    Google Scholar
     

  • 43.

    Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 109, 9320–9325 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 49, 904–914 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Yeh, P. J.-F. & Famiglietti, J. S. Regional groundwater evapotranspiration in Illinois. J. Hydrometeorol. 10, 464–478 (2009).

    ADS 

    Google Scholar
     

  • 49.

    Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Steward, D. R. et al. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc. Natl. Acad. Sci. USA 110, E3477–E3486 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Meixner, T. et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534, 124–138 (2016).

    ADS 

    Google Scholar
     

  • 52.

    Wada, Y. et al. Modeling global water use for the 21st century: Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

    ADS 

    Google Scholar
     

  • 53.

    Yoon, J.-H., Wang, S. S., Lo, M.-H. & Wu, W.-Y. Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater. Environ. Res. Lett. 13, 054002 (2018).

    ADS 

    Google Scholar
     

  • 54.

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M. & Peterson, D. H. Changes in the onset of spring in the Western United States. Bull. Am. Meteorol. Soc. 82, 399–416 (2001).

    ADS 

    Google Scholar
     

  • 56.

    Earman, S., Campbell, A. R., Phillips, F. M. & Newman, B. D. Isotopic exchange between snow and atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern United States. J. Geophys. Res.: Atmospheres 111, D006470 (2006).


    Google Scholar
     

  • 57.

    Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian Water Towers. Science 328, 1382–1385 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Rhoades, A. M., Ullrich, P. A. & Zarzycki, C. M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 50, 261–288 (2018).


    Google Scholar
     

  • 59.

    Maxwell, R. M. et al. Surface‐subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 50, 1531–1549 (2014).

    ADS 

    Google Scholar
     

  • 60.

    Fan, Y., Miguez‐Macho, G., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res.: Atmospheres 112, D10125 (2007).

    ADS 

    Google Scholar
     

  • 61.

    Hirmas, D. R. et al. Climate-induced changes in continental-scale soil macroporosity may intensify water cycle. Nature 561, 100–103 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System models. J. Clim. 26, 1877–1900 (2013).

    ADS 

    Google Scholar
     

  • 63.

    Taylor, R. G. et al. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature. Clim. Change 3, 374–378 (2013).

    ADS 

    Google Scholar
     

  • 64.

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).


    Google Scholar
     

  • 65.

    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).

    ADS 

    Google Scholar
     

  • 67.

    Niu, G. Y., Yang, Z. L., Dickinson, R. E. & Gulden, L. E. A simple TOPMODEL‐based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res.: Atmospheres 110, D21106 (2005).

    ADS 

    Google Scholar
     

  • 68.

    Feng, Q., Ma, H., Jiang, X., Wang, X. & Cao, S. What has caused desertification in China? Sci. Rep. 5, 15998 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res.: Solid Earth 120, 2648–2671 (2015).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *