CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Cantone, I. & Fisher, A. G. Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol. 20, 282–289 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Xiang, Y. et al. Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat. Genet. 52, 95–105 (2019).

    PubMed 

    Google Scholar
     

  • 7.

    Smith, Z. D., Sindhu, C. & Meissner, A. Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol. 17, 139–154 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Maenohara, S. et al. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos. PLoS Genet. 13, e1007042 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    von Meyenn, F. et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol. Cell 62, 848–861 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Funaki, S. et al. Inhibition of maintenance DNA methylation by Stella. Biochem. Biophys. Res. Commun. 453, 455–460 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Li, Y. et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 564, 136–140 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Mulholland, C. B. et al. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive demethylation in mammals. Preprint at bioRxiv https://doi.org/10.1101/321604 (2020).

  • 15.

    Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Hackett, J. A. et al. Synergistic mechanisms of DNA demethylation during transition to ground-state pluripotency. Stem Cell Rep. 1, 518–531 (2013).

    CAS 

    Google Scholar
     

  • 17.

    Amouroux, R. et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 18, 225–233 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Chow, J. C. et al. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141, 956–969 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Percharde, M. et al. A LINE1-Nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Garcia-Perez, J. L., Widmann, T. J. & Adams, I. R. The impact of transposable elements on mammalian development. Development 143, 4101–4114 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Rodriguez-Terrones, D. & Torres-Padilla, M. E. Nimble and ready to mingle: transposon outbursts of early development. Trends Genet. 34, 806–820 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Stelzer, Y., Shivalila, C. S., Soldner, F., Markoulaki, S. & Jaenisch, R. Tracing dynamic changes of DNA methylation at single-cell resolution. Cell 163, 218–229 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Walter, M., Teissandier, A., Perez-Palacios, R. & Bourc’his, D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. Elife 5, e11418 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Hackett, J. A., Kobayashi, T., Dietmann, S. & Surani, M. A. Activation of lineage regulators and transposable elements across a pluripotent spectrum. Stem Cell Rep. 8, 1645–1658 (2017).

    CAS 

    Google Scholar
     

  • 27.

    Sharif, J. et al. Activation of endogenous retroviruses in Dnmt1
    −/− ESCs involves disruption of SETDB1-mediated repression by NP95 binding to hemimethylated DNA. Cell Stem Cell 19, 81–94 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Nady, N. et al. ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation. Elife 4, e10150 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Tu, S. et al. Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature 534, 387–390 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Li, C., Scott, D. A., Hatch, E., Tian, X. & Mansour, S. L. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134, 167–176 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Dornan, D. et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86–92 (2004).

    CAS 

    Google Scholar
     

  • 34.

    Vaisvila, R. et al. EM-seq: detection of DNA methylation at single base resolution from picograms of DNA. Preprint at bioRxiv https://doi.org/10.1101/2019.12.20.884692 (2019).

  • 35.

    Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Guo, X. et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640–644 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    De Iaco, A., Coudray, A., Duc, J. & Trono, D. DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep. 20, e47382 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Brumbaugh, J. et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling. Cell 172, 106–120 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Choi, J. et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548, 219–223 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Choi, J. et al. DUSP9 modulates DNA hypomethylation in female mouse pluripotent stem cells. Cell Stem Cell 20, 706–719 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Hamilton, W. B. et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature 575, 355–360 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Eckersley-Maslin, M. et al. Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. Genes Dev. 33, 194–208 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Hernandez, C. et al. Dppa2/4 facilitate epigenetic remodeling during reprogramming to pluripotency. Cell Stem Cell. 23, 396–411 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Nakamura, T., Nakagawa, M., Ichisaka, T., Shiota, A. & Yamanaka, S. Essential roles of ECAT15-2/Dppa2 in functional lung development. Mol. Cell. Biol. 31, 4366–4378 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Engelen, E. et al. Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry. Nat. Commun. 6, 7155 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Eckersley-Maslin, M. A. et al. Dppa2/4 target chromatin bivalency enabling multi-lineage commitment. Preprint at bioRxiv https://doi.org/10.1101/832873 (2019).

  • 47.

    Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Noh, K. M. et al. Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs. Mol. Cell 59, 89–103 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Boulard, M., Edwards, J. R. & Bestor, T. H. FBXL10 protects Polycomb-bound genes from hypermethylation. Nat. Genet. 47, 479–485 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Reddington, J. P. et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol. 14, R25 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Lindroth, A. M. et al. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet. 4, e1000145 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Kano, H. et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23, 1303–1312 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Hackett, J. A. et al. Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. Nat. Commun. 9, 4292 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Chen, B. H. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).


    Google Scholar
     

  • 61.

    Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Berrens, R. V. et al. An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells. Cell Stem Cell 21, 694–703 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *