CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Khan, A. et al. MHD flow and heat transfer in sodium alginate fluid with thermal radiation and porosity effects: fractional model of Atangana–Baleanu derivative of non-local and non-singular kernel. Symmetry 11(10), 1295 (2019).

    CAS 

    Google Scholar
     

  • 2.

    Zubair, M. et al. Entropy generation optimization in squeezing magnetohydrodynamics flow of casson nanofluid with viscous dissipation and joule heating effect. Entropy 21(8), 747 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 3.

    Abd El-Aziz, M. & Afify, A. A. MHD casson fluid flow over a stretching sheet with entropy generation analysis and hall influence. Entropy 21(6), 592 (2019).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 4.

    Rehman, K. U., Malik, M. Y., Khan, W. A., Khan, I. & Alharbi, S. O. Numerical solution of non-newtonian fluid flow due to rotatory rigid disk. Symmetry 11(5), 699 (2019).

    MATH 

    Google Scholar
     

  • 5.

    Saeed, A. et al. Three-dimensional Casson nanofluid thin film flow over an inclined rotating disk with the impact of heat generation/consumption and thermal radiation. Coatings 9(4), 248 (2019).

    CAS 

    Google Scholar
     

  • 6.

    Lund, L. A., Omar, Z. & Khan, I. Steady incompressible magnetohydrodynamics Casson boundary layer flow past a permeable vertical and exponentially shrinking sheet: a stability analysis. Heat Transf. Asian Res. 48(8), 3538–3556 (2019).


    Google Scholar
     

  • 7.

    Lund, L. A., Omar, Z. & Khan, I. Analysis of dual solution for MHD flow of Williamson fluid with slippage. Heliyon 5(3), e01345 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Lu, D., Kahshan, M. & Siddiqui, A. M. Hydrodynamical study of micropolar fluid in a porous-walled channel: application to flat plate dialyzer. Symmetry 11(4), 541 (2019).

    CAS 

    Google Scholar
     

  • 9.

    Khan, N. S. et al. Influence of inclined magnetic field on Carreau nanoliquid thin film flow and heat transfer with graphene nanoparticles. Energies 12(8), 1459 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Ali Lund, L. et al. Stability Analysis of darcy-forchheimer flow of casson type nanofluid over an exponential sheet: investigation of critical points. Symmetry 11(3), 412 (2019).


    Google Scholar
     

  • 11.

    Ullah, I. et al. MHD slip flow of Casson fluid along a nonlinear permeable stretching cylinder saturated in a porous medium with chemical reaction, viscous dissipation, and heat generation/absorption. Symmetry 11(4), 531 (2019).

    CAS 

    Google Scholar
     

  • 12.

    Yahaya, R., Md Arifin, N. & Mohamed Isa, S. Stability analysis on magnetohydrodynamic flow of Casson fluid over a shrinking sheet with homogeneous-heterogeneous reactions. Entropy 20(9), 652 (2018).

    ADS 

    Google Scholar
     

  • 13.

    Khan, N. & Husain, Z. Spinning flow of Casson fluid near an infinite rotating disk. Math. Comput. Appl. 20(3), 174–188 (2015).

    MathSciNet 

    Google Scholar
     

  • 14.

    Hamid, M., Usman, M., Khan, Z. H., Haq, R. U. & Wang, W. Heat transfer and flow analysis of Casson fluid enclosed in a partially heated trapezoidal cavity. Int. Commun. Heat Mass Transf. 108, 104284 (2019).


    Google Scholar
     

  • 15.

    Hamid, M., Usman, M., Khan, Z. H., Ahmad, R. & Wang, W. Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet. Phys. Lett. A 383(20), 2400–2408 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 16.

    Murthy, M. K., Raju, C. S., Nagendramma, V., Shehzad, S. A., & Chamkha, A. J. (2019). Magnetohydrodynamics boundary layer slip Casson fluid flow over a dissipated stretched cylinder. In Defect and Diffusion Forum (Vol. 393, pp. 73–82). Trans Tech Publications Ltd.

  • 17.

    Mahanthesh, B., Animasaun, I. L., Rahimi-Gorji, M. & Alarifi, I. M. Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition and non-uniform heat source/sink. Phys. A 535, 122471 (2019).

    MathSciNet 

    Google Scholar
     

  • 18.

    Vijayalakshmi, P., Gunakala, S. R., Animasaun, I. L., & Sivaraj, R. (2019). Chemical Reaction and nonuniform heat source/sink effects on Casson fluid flow over a vertical cone and flat plate saturated with porous medium. In Applied Mathematics and Scientific Computing (pp. 117–127). Birkhäuser, Cham.

  • 19.

    Atlas, M., Hussain, S. & Sagheer, M. Entropy generation and unsteady Casson fluid flow squeezing between two parallel plates subject to Cattaneo–Christov heat and mass flux. Eur. Phys. J. Plus 134(1), 33 (2019).


    Google Scholar
     

  • 20.

    Das, S., Mondal, H., Kundu, P. K. & Sibanda, P. Spectral quasi-linearization method for Casson fluid with homogeneous heterogeneous reaction in presence of nonlinear thermal radiation over an exponential stretching sheet. Multidiscip. Model. Mater. Struct. 15(2), 398–417 (2019).

    CAS 

    Google Scholar
     

  • 21.

    Crane, L. J. Flow past a stretching plate. J. Appl. Math. Phys. (ZAMP) 21, 645–647 (1970).


    Google Scholar
     

  • 22.

    Mabood, F., Khan, W. A. & Ismail, A. M. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J. Magn. Magn. Mater. 374, 569–576 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Rana, P. & Bhargava, R. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Commun. Nonlinear Sci. Numer. Simul. 17(1), 212–226 (2012).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 24.

    Hamad, M. A. A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. Int. Commun. Heat Mass Transfer 38(4), 487–492 (2011).

    CAS 

    Google Scholar
     

  • 25.

    Hassan, M., Fetecau, C., Majeed, A. & Zeeshan, A. Effects of iron nanoparticles’ shape on convective flow of ferrofluid under highly oscillating magnetic field over stretchable rotating disk. J. Magn. Magn. Mater. 465, 531–539 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Haq, R. U., Nadeem, S., Khan, Z. H. & Akbar, N. S. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys. E 65, 17–23 (2015).


    Google Scholar
     

  • 27.

    Vajravelu, K. Viscous flow over a nonlinearly stretching sheet. Appl. Math. Comput. 124(3), 281–288 (2001).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 28.

    Cortell, R. Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184(2), 864–873 (2007).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 29.

    Barletta, A., Magyari, E. & Keller, B. Dual mixed convection flows in a vertical channel. Int. J. Heat Mass Transf. 48(23–24), 4835–4845 (2005).

    CAS 
    MATH 

    Google Scholar
     

  • 30.

    Cliffe, K. A., Spence, A. & Tavener, S. J. The numerical analysis of bifurcation problems with application to fluid mechanics. Acta Numer. 9, 39–131 (2000).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 31.

    Bhattacharyya, K. Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet. Int. Commun. Heat Mass Transfer 38(7), 917–922 (2011).

    CAS 

    Google Scholar
     

  • 32.

    Makinde, O. D., Khan, W. A. & Khan, Z. H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013).


    Google Scholar
     

  • 33.

    Gelfgat, A. Y. & Bar-Yoseph, P. Z. Multiple solutions and stability of confined convective and swirling flows—a continuing challenge. Int. J. Numer. Meth. Heat Fluid Flow 14(2), 213–241 (2004).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 34.

    Raza, J. (2018). Similarity Solutions of Boundary Layer Flows in a Channel Filled By Non-Newtonian Fluids.(Doctoral dissertation, Universiti Utara Malaysia).

  • 35.

    Dero, S., Rohni, A. M. & Saaban, A. MHD micropolar nanofluid flow over an exponentially stretching/shrinking surface: triple solutions. J. Adv. Res. Fluid Mech. Therm. Sci 56, 165–174 (2019).


    Google Scholar
     

  • 36.

    Dero, S., Uddin, M. J. & Rohni, A. M. Stefan blowing and slip effects on unsteady nanofluid transport past a shrinking sheet: Multiple solutions. Heat Transf. Asian Res. 48(6), 2047–2066 (2019).


    Google Scholar
     

  • 37.

    Ridha, A. & Curie, M. Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations. Zeitschrift für angewandte Mathematik und Physik ZAMP 47(3), 341–352 (1996).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 38.

    Lund, L. A., Omar, Z. & Khan, I. Quadruple solutions of mixed convection flow of magnetohydrodynamic nanofluid over exponentially vertical shrinking and stretching surfaces: stability analysis. Comput. Methods Programs Biomed. 182, 105044 (2019).

    PubMed 

    Google Scholar
     

  • 39.

    Alarifi, I. M. et al. MHD flow and heat transfer over vertical stretching sheet with heat sink or source effect. Symmetry 11(3), 297 (2019).

    CAS 
    MATH 

    Google Scholar
     

  • 40.

    Mahapatra, T. R., Nandy, S. K., Vajravelu, K. & Van Gorder, R. A. Stability analysis of the dual solutions for stagnation-point flow over a non-linearly stretching surface. Meccanica 47(7), 1623–1632 (2012).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 41.

    Akbar, N. S., Khan, Z. H., Haq, R. U. & Nadeem, S. Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Appl. Math. Mech. 35(7), 813–820 (2014).

    MathSciNet 

    Google Scholar
     

  • 42.

    Rana, P., Shukla, N., Gupta, Y. & Pop, I. Homotopy analysis method for predicting multiple solutions in the channel flow with stability analysis. Commun. Nonlinear Sci. Numer. Simul. 66, 183–193 (2019).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 43.

    Lund, L. A., Omar, Z. & Khan, I. Mathematical analysis of magnetohydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: dual solutions. Heliyon 5(9), e02432 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Ismail, N. S., Arifin, N. M., Nazar, R. & Bachok, N. Stability analysis of unsteady MHD stagnation point flow and heat transfer over a shrinking sheet in the presence of viscous dissipation. Chin. J. Phys. 57, 116–126 (2019).

    CAS 
    MATH 

    Google Scholar
     

  • 45.

    Naganthran, K., & Nazar, R. (2019, April). Unsteady boundary layer flow of a Casson fluid past a permeable stretching/shrinking sheet: paired solutions and stability analysis. In Journal of Physics: Conference Series (Vol. 1212, No. 1, p. 012028). IOP Publishing.

  • 46.

    Hussain, T., Shehzad, S. A., Alsaedi, A., Hayat, T. & Ramzan, M. J. J. O. C. S. U. Flow of Casson nanofluid with viscous dissipation and convective conditions: a mathematical model. J. Cent. South Univ. 22(3), 1132–1140 (2015).

    CAS 

    Google Scholar
     

  • 47.

    Lund, L. A., Omar, Z., Khan, I. & Dero, S. Multiple solutions of Cu–C6H9NaO7 and Ag–C6H9NaO7 nanofluids flow over nonlinear shrinking surface. J. Cent. South Univ. 26(5), 1283–1293 (2019).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *