[ad_1]
Levins, R. Evolution in Changing Environments: Some Theoretical Explorations. (Princeton University Press, 1968).
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Ducatez, S. Brood parasitism: a good strategy in our changing world? Proc. R. Soc. B: Biol. Sci. 281, 20132404 (2014).
Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
Futuyma, D. J. & Moreno, G. The evolution of ecological specialisation. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
Abrams, P. A., Grover, J. P. & DeAngelis, E. D. L. The prerequisites for and likelihood of generalist‐specialist coexistence. Am. Naturalist 167, 329–342 (2006).
Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).
Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).
Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).
Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. B: Biol. Sci. 276, 3037–3045 (2009).
Davies, N. B. Cuckoos, Cowbirds and Other Cheats. (T & A D Poyser, 2000). https://doi.org/10.5040/9781472597472?locatt=label:secondary_bloomsburyCollections.
Stoddard, M. C. & Hauber, M. E. Colour, vision and coevolution in avian brood parasitism. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160339 (2017).
Thorogood, R., Spottiswoode, C. N., Portugal, S. J. & Gloag, R. The coevolutionary biology of brood parasitism: a call for integration. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180190 (2019).
Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003).
Johnsgard, P. A. The Avian Brood Parasites: Deception at the Nest. (Oxford University Press, 1997).
Soler, M. Avian Brood Parasitism: Behaviour, Ecology, Evolution and Coevolution. (Springer, Berlin Heidelberg, 2017). https://doi.org/10.1007/978-3-319-73138-4.
Krüger, O. & Davies, N. B. The evolution of cuckoo parasitism: a comparative analysis. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 375–381 (2002).
Hauber, M. E. Interspecific brood parasitism and the evolution of host clutch sizes. Evol. Ecol. Res. 5, 559–570 (2003).
Kilner, R. M. The evolution of virulence in brood parasites. Ornithological Sci. 4, 55–64 (2005).
Feeney, W. E. et al. Brood parasitism and the evolution of cooperative breeding in birds. Science 342, 1506–1508 (2013).
Medina, I., Langmore, N. E., Lanfear, R. & Kokko, H. The evolution of clutch size in hosts of avian brood parasites. Am. Naturalist 190, E112–E123 (2017).
Krüger, O., Sorenson, M. D. & Davies, N. B. Does coevolution promote species richness in parasitic cuckoos? Proc. R. Soc. B: Biol. Sci. 276, 3871–3879 (2009).
Krüger, O. & Kolss, M. Modelling the evolution of common cuckoo host-races: speciation or genetic swamping? J. Evolut. Biol. 26, 2447–2457 (2013).
Medina, I. & Langmore, N. E. The evolution of host specialisation in avian brood parasites. Ecol. Lett. 19, 1110–1118 (2016).
Büchi, L. & Vuilleumier, S. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am. Naturalist 183, 612–624 (2014).
De Mársico, M. C., Mahler, B., Chomnalez, M., Di Giácomo, A. G. & Reboreda, J. C. Host Use by Generalist and Specialist Brood-Parasitic Cowbirds at Population and Individual Levels. In Advances in the Study of Behavior (ed. Macedo, R.) Ch. 3, Vol. 42, 83–121 (Academic Press, 2010), https://doi.org/10.1016/s0065-3454(10)42003-3.
Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44, 535–560 (1999).
Farnsworth, G. L. & Simons, T. R. How many baskets? Clutch sizes that maximize annual fecundity of multiple-brooded birds. Auk 118, 973–982 (2001).
Starrfelt, J. & Kokko, H. Bet‐hedging—a triple trade‐off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).
Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. 108, 10816–10822 (2011).
Moskát, C., Barta, Z., Hauber, M. E. & Honza, M. High synchrony of egg laying in common cuckoos (Cuculus canorus) and their great reed warbler (Acrocephalus arundinaceus) hosts. Ethol. Ecol. Evolution 18, 159–167 (2006).
Brooker, L. C. & Brooker, M. G. Why are cuckoos host specific? Oikos 57, 301–309 (1990).
Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. 112, 184–189 (2015).
Olofsson, H., Ripa, J. & Jonzén, N. Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc. R. Soc. B: Biol. Sci. 276, 2963–2969 (2009).
Akre, K. L. & Johnsen, S. Psychophysics and the evolution of behavior. Trends Ecol. Evolution 29, 291–300 (2014).
Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).
Poulin, B., Lefebvre, G. & McNeil, R. Tropical avian phenology in relation to abundance and exploitation of food resources. Ecology 73, 2295–2309 (1992).
Botero, C. A. & Rubenstein, D. R. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS ONE 7, e32311 (2012).
Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).
Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. B Biol. Sci. 276, 2323–2331 (2009).
Nevoux, M., Forcada, J., Barbraud, C., Croxall, J. & Weimerskirch, H. Bet-hedging response to environmental variability, an intraspecific comparison. Ecology 91, 2416–2427 (2010).
Salaberria, C., Celis, P., López‐Rull, I. & Gil, D. Effects of temperature and nest heat exposure on nestling growth, dehydration and survival in a Mediterranean hole-nesting passerine. Ibis 156, 265–275 (2014).
Ospina, E. A., Merrill, L. & Benson, T. J. Incubation temperature impacts nestling growth and survival in an open-cup nesting passerine. Ecol. Evolution 8, 3270–3279 (2018).
Nagy, J., Hauber, M. E., Hartley, I. R. & Mainwaring, M. C. Correlated evolution of nest and egg characteristics in birds. Anim. Behav. 158, 211–225 (2019).
Martin, T. E. et al. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Funct. Ecol. 31, 1231–1240 (2017).
Turtumøygard, T. & Slagsvold, T. Evolution of brood parasitism in birds: constraints related to prey type. Behaviour 147, 299–317 (2010).
Douglas, D. J. T., Newson, S. E., Leech, D. I., Noble, D. G. & Robinson, R. A. How important are climate-induced changes in host availability for population processes in an obligate brood parasite, the European cuckoo? Oikos 119, 1834–1840 (2010).
Saino Nicola et al. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. Biol. Lett. 5, 539–541 (2009).
Møller, A. P. et al. Rapid change in host use of the common cuckoo Cuculus canorus linked to climate change. Proc. R. Soc. B: Biol. Sci. 278, 733–738 (2011).
Koleček, J., Procházka, P., Brlík, V. & Honza, M. Cross-continental test of natal philopatry and habitat-imprinting hypotheses to explain host specificity in an obligate brood parasite. Sci. Nat. 107, 1–8 (2020).
Payne, R. B., Payne, L. L., Woods, J. L. & Sorenson, M. D. Imprinting and the origin of parasite–host species associations in brood-parasitic indigobirds, Vidua chalybeata. Anim. Behav. 59, 69–81 (2000).
Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799 (1988).
Halupka, L. & Halupka, K. The effect of climate change on the duration of avian breeding seasons: a meta-analysis. Proc. R. Soc. B Biol. Sci. 284, 20171710 (2017).
Zink, A. G. & Lyon, B. E. Evolution of conspecific brood parasitism versus cooperative breeding as alternative reproductive tactics. Am. Naturalist 187, 35–47 (2016).
Wells, M. T. & Barker, F. K. Big groups attract bad eggs: brood parasitism correlates with but does not cause cooperative breeding. Anim. Behav. 133, 47–56 (2017).
Ursino, C. A., De Mársico, M. C., Sued, M., Farall, A. & Reboreda, J. C. Brood parasitism disproportionately increases nest provisioning and helper recruitment in a cooperatively breeding bird. Behav. Ecol. Sociobiol. 65, 2279–2286 (2011).
Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B: Biol. Sci. 273, 1375–1383 (2006).
Guigueno, M. F. & Sealy, S. G. Nest sanitation in passerine birds: implications for egg rejection in hosts of brood parasites. J. Ornithol. 153, 35–52 (2012).
Dunn, P. O. & Winkler, D. W. Changes in timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds. 113–128, (Oxford University Press, 2010) https://doi.org/10.1093/oso/9780198824268.003.0009.
Hauber, M. E. Site selection and repeatability in Brown-Headed Cowbird (Molothrus ater) parasitism of Eastern Phoebe (Sayornis phoebe) nests. Can. J. Zool. 79, 1518–1523 (2001).
Kilner, R. M. How selfish is a cowbird nestling? Anim. Behav. 66, 569–576 (2003).
Lowther, P.E. Brood Parasitism—host Lists. (Field Museum of Natural History, Chicago, IL, 2019) https://www.fieldmuseum.org/blog/brood-parasitism-host-lists.
BirdLife International and Handbook of the Birds of the World. Bird species distribution maps of the world. Version 2018.1. http://datazone.birdlife.org/species/requestdis (2018).
ORNL DAAC 2018. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. (ORNL DAAC, Oak Ridge, Tennessee, USA, 2016) https://doi.org/10.3334/ORNLDAAC/1379.
Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, https://doi.org/10.17161/bi.v10i0.4955 (2015).
Colwell, R. K. Predictability, constancy, and contingency of periodic phenomena. Ecology 55, 1148–1153 (1974).
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Millard SP. EnvStats: an R Package for Environmental Statistics. ISBN 978-1-4614-8455-4, (Springer, New York, 2013). http://www.springer.comhttps://doi.org/10.1002/9780470057339.vae043.pub2.
Revelle, W. psych: procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois. R package version 2.0.7, https://CRAN.R-project.org/package=psych (2020).
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
[ad_2]
Source link