Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I. Poly-γ-glutamic acid: production, properties and applications. Microbiology. 2015;161:1–17.
Ashiuchi M, Yamashiro D, Yamamoto K. Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes. Plasmid. 2013;70:209–15.
Taniguchi M, Kato K, Shimauchi A, Ping X, Nakayama H, Fujita K, et al. Proposals for wastewater treatment by applying flocculating activity of cross-linked poly-γ-glutamic acid. J Biosci Bioeng. 2005;99:245–51.
Bajaj I, Singhal R. Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresour Technol. 2011;102:5551–61.
Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, et al. New biological functions and applications of high-molecular-mass poly-γ-glutamic acid. Chem Biodivers. 2010;7:1555–62.
Zhao C, Zhang Y, Wei X, Hu Z, Zhu F, Xu L, et al. Production of ultra-high molecular weight poly-γ-glutamic acid with Bacillus licheniformis P-104 and characterization of its flocculation properties. Appl Biochem Biotechnol. 2013;170:562–72.
Choi JC, Uyama H, Lee CH, Sung MH. Promotion effects of ultra-high molecular weight poly-γ-glutamic acid on wound healing. J Microbiol Biotechnol. 2015;25:941–5.
Yao J, Jing J, Xu H, Liang J, Wu Q, Feng X, et al. Investigation on enzymatic degradation of γ-polyglutamic acid from Bacillus subtilis NX-2. J Mol Catal B Enzym. 2009;56:158–64.
Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem Rec. 2005;5:352–66.
Candela T, Mock M, Fouet A. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J Bacteriol. 2005;187:7765–72.
Yamashiro D, Yoshioka M, Ashiuchi M. Bacillus subtilis pgsE (Formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc. Biotechnol Bioeng. 2011;108:226–30.
Kubota H, Matsunobu T, Uotani K, Takabe H, Satoh A, Tanaka T, et al. Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotech Biochem. 1993;57:1212–3.
Orrego C, Arnaud M, Halvorsen HO. Bacillus subtilis 168 Genetic transformation mediated by outgrowing spores: necessity for cell contact. J Bacteriol. 1978;134:973–81.
Ashikaga S, Nanamiya H, Ohashi Y, Kawamura F. Natural genetic competence in Bacillus subtilis natto OK2. J Bacteriol. 2000;182:2411–5.
Irurzun I, Bou JJ, Pérez-Camero G, Abad C, Campos A, Muñoz-Guerra S. Mark-Houwink parameters of biosynthetic poly(γ-glutamic acid) in aqueous solution. Macromol Chem Phys. 2001;202:3253–6.
Suzuki S, Christensen BE, Kitamura S. Effect of mannuronate content and molecular weight of alginates on intestinal immunological activity through Peyer’s patch cells of C3H/HeJ mice. Carbohydr Polym. 2011;83:629–34.
Urushibata Y, Tokuyama S, Tahara Y. Difference in transcription levels of cap genes for γ-polyglutamic acid production between Bacillus subtilis IFO 16449 and Marburg 168. J Biosci Bioeng. 2002;93:252–4.
Bhilocha S, Amin R, Pandya M, Yuan H, Tank M, LoBello J, et al. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5–500 kDa hyaluronan. Anal Biochem. 2011;417:41–49.
Ashiuchi M, Soda K, Misono H. A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun. 1999;263:6–12.
Santelli E, Leone M, Li C, Fukushima T, Preece NE, Olson AJ, et al. Structural analysis of Siah1-Siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex. J Biol Chem. 2005;280:34278–87.