CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Xu, W. N., Xia, Z. Y., Zhou, M. T., Liu, D. X. & Xia, D. Theory and Practice of Ecological Protection Technology of Vegetation Concrete 55–64 (China Water & Power Press, Beijing, 2012) ((in Chinese)).


    Google Scholar
     

  • 2.

    Liu, D. X. et al. Improvement test on frost resistance of vegetation-concrete and engineering application of test fruitage. Environ. Earth Sci. 69, 161–170 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Xu, W. N., Xia, D., Zhao, B. Q., Xia, Z. Y. & Liu, D. X. Research on Vegetation Ecological Restoration Technology in Disturbed Areas of Hydropower Projects (Science Press, Beijing, 2017) ((in Chinese)).


    Google Scholar
     

  • 4.

    National Energy Administration of the People’s Republic of China. Technical Code for Eco-restoration of Vegetation Concrete on Steep Slope of Hydropower Projects: NB/T 35082–2016. (China Water & Power Press, Beijing, 2016).

  • 5.

    Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 45, 629–634 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Lehmann, J. et al. Biochar effects on soil biota: a review. Soil Biol. Biochem. 43, 1812–1836 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Huang, L., Liu, C., Liu, X. & Chen, Z. Immobilization of heavy metals in e-waste contaminated soils by combined application of biochar and phosphate fertilizer. Water Air Soil Pollut. 230, 26 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Spokas, K. A., Koskinen, W. C., Baker, J. M. & Reicosky, D. C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77, 574–581 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Wu, Y., Liu, H., Yang, A. Z. & Zhao, Y. S. Influences of biochar supply on water and soil erosion in slopping farm-land of black soil region. Trans. Chin. Soc. Agric. Mach. 49, 294–301 (2018) ((in Chinese)).


    Google Scholar
     

  • 10.

    Yan, Y. H., Zheng, J. Y., Zhang, X. C. & Li, S. Q. Impact of biochar addition into typical soils on field capacity in Loess Plateau. J. Soil Water Conserv. 27, 120–124 (2013) ((in Chinese)).


    Google Scholar
     

  • 11.

    Forjan, R. et al. Comparative effect of compost and technosol enhanced with biochar on the fertility of a degraded soil. Environ. Monit. Assess. 190(10), 610 (2018).

    Article 

    Google Scholar
     

  • 12.

    Yin, Q. Q. & Wang, S. R. Characterization and activation of pyrolytic char from fast pyrolysis. J. Basic Sci. Eng. 21, 50–58 (2013) ((in Chinese)).


    Google Scholar
     

  • 13.

    Bu, X. L. & Xue, J. H. Biochar effects on soil habitat and plant growth: a review. Ecol. Environ. Sci. 23, 535–540 (2014) ((in Chinese)).


    Google Scholar
     

  • 14.

    Tang, G. M. et al. Effect of applying biochar on the quality of grey desert soil and maize cropping in Xinjiang China. J. Agro-Environ. Sci. 30, 1797–1802 (2011) ((in Chinese)).

    CAS 

    Google Scholar
     

  • 15.

    Beusch, C. et al. Biochar vs. clay: comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma 337, 524–535 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Li, J. W., Gu, K., Tang, C. S., Wang, H. S. & Shi, B. Advances in effects of biochar on physical and chemical properties of soils. J. Zhejiang Univ. (Eng. Sci.). 52, 192–206 (2018) ((in Chinese)).


    Google Scholar
     

  • 17.

    Tang, X. X. & Chen, J. L. Review of effect of biochar on soil physi-chemical and microbial properties. Ecol. Sci. 37, 192–199 (2018) ((in Chinese)).


    Google Scholar
     

  • 18.

    Ju, W. L., Jing, Y. D. & Liu, X. Research progress on biochar aging. Chin. J. Soil Sci. 47, 751–757 (2016) ((in Chinese)).


    Google Scholar
     

  • 19.

    Sadasivam, B. Y. & Reddy, K. R. Engineering properties of waste wood-derived biochars and biochar-amended soils. Int. J. Geotech. Eng. 9, 521–535 (2015).

    Article 

    Google Scholar
     

  • 20.

    Fellet, G., Marmiroli, M. & Marchiol, L. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci. Total Environ. 468–469, 598–608 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E. & Nick, V. D. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 171, 591–596 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Gao, Y., Dai, C. L., Wu, G. Z., Du, X. Q. & Shang, Y. H. Unsaturated frozen soil permeability coefficient test and analysis under the condition of variable porosity. J. Harbin Univ. Sci. Technol. 22, 127–131 (2017) ((in Chinese)).


    Google Scholar
     

  • 23.

    Herath, H., Camps-Arbestain, M. & Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209–210, 188–197 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Wei, Y., Wang, H., Liu, H. & Wu, Y. Effect of biochar on soil moisture and its infiltration performance in black soil area. Trans. Chin. Soc. Agric. Mach. 59, 1–14 (2019) ((in Chinese)).


    Google Scholar
     

  • 25.

    Zhang, S. X., Zhang, Z. Y., Jiang, S. W. & Yu, J. Effect of different management systems on soil water content in the black soil of Northeast China. Adv. Mater. Res. 610–613, 2912–2915 (2012).

    Article 

    Google Scholar
     

  • 26.

    Ibrahim, H. M., Al-Wabel, M. I., Usman, A. R. A. & Al-Omran, A. Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci. 178, 165–173 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Wang, Y., Li, J., Jiang, Q., Huang, Y. & Li, X. Experimental study on variation law and mechanism of soil shear strength parameters along the slope. Adv. Civ. Eng. 8, 1–11 (2019).


    Google Scholar
     

  • 28.

    Hardie, M., Clothier, B., Bound, S., Oliver, G. & Close, D. Does biochar influence soil physical properties and soil water availability. Plant Soil 376, 347–361 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Wu, Y. et al. The effects of different agricultural waste biochars and application rates on soil pH, water holding capacity and N adsorption. Soils Fertil. Sci. China. 279, 93–98 (2019).


    Google Scholar
     

  • 30.

    Fang, X., Shen, C., Li, C., Wang, L. & Chen, Z. Quantitative analysis of microstructure characteristics of pucheng loess in shaanxi province. Chin. J. Rock Mech. Eng. 32, 1917–1925 (2013) ((in Chinese)).


    Google Scholar
     

  • 31.

    Zhao, F. L. et al. Coconut shell derived biochar to enhance water spinach (Ipomoea aquatica Forsk) growth and decrease nitrogen loss under tropical conditions. Sci. Rep. 9, 20291 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Kettunen, R. & Saarnio, S. Biochar can restrict N2O emissions and the risk of nitrogen leaching from an agricultural soil during the freeze-thaw period. Agric. Food Sci. 22, 373–379 (2015).

    Article 

    Google Scholar
     

  • 33.

    Pan, L. B., Xu, F. Z. & Sha, L. Q. Effect of biochar on soil properties and rubber (Hevea brasilensis) seedling biomass. Mt. Sci. 33, 449–456 (2015) ((in Chinese)).


    Google Scholar
     

  • 34.

    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochars varying in particle size surface and pore properties. Pedosphere. 25, 770–780 (2015).

    Article 

    Google Scholar
     

  • 35.

    Yang, Y. S., Xu, W. N., Liu, D. X. & Xia, Z. Y. Evaluation and eco-regulation engineering on slopes of hydropower projects. Nat. Environ. Pollut. Technol. 17, 131–138 (2018).


    Google Scholar
     

  • 36.

    Huang, X. L. Effect of Herb Roots on Shearing Strength in Vegetation-Growing Concrete Matrix. China Three Gorges University. (2011). (in Chinese)

  • 37.

    Soldo, A., Miletić, M. & Auad, M. L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 10, 267 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439–451 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Mukherjee, A., Zimmerman, A., Cooper, W. & Hamdan, R. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months field-aging. Solid Earth. 5, 693–704 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V. & Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst. Environ. 206, 46–59 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Ye, W. J. & Li, C. Q. The consequences of changes in the structure of loess as a result of cyclic freezing and thawing. Bull. Eng. Geol. Environ. 78, 2125–2138 (2019).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *