CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Zeng, F. G., Rebscher, S., Harrison, W., Sun, X. & Feng, H. Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Spriet, A. et al. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the nucleus freedom cochlear implant system. Ear. Hear. 28, 62–72 (2007).

    PubMed 

    Google Scholar
     

  • 3.

    Wouters, J. & Vanden Berghe, J. Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system. Ear. Hear. 22, 420–430 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Verschuur, C. A., Lutman, M. E., Ramsden, R., Greenham, P. & O’Driscoll, M. Auditory localization abilities in bilateral cochlear implant recipients. Otol. Neurotol. 26, 965–971 (2005).

    PubMed 

    Google Scholar
     

  • 5.

    Wilson, B. S. Getting a decent (but sparse) signal to the brain for users of cochlear implants. Hear. Res. 322, 24–38 (2015).

    PubMed 

    Google Scholar
     

  • 6.

    Fletcher, M. D., Hadeedi, A., Goehring, T. & Mills, S. R. Electro-haptic enhancement of speech-in-noise performance in cochlear implant users. Sci. Rep. 9, 11428 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Huang, J., Sheffield, B., Lin, P. & Zeng, F. G. Electro-tactile stimulation enhances cochlear implant speech recognition in noise. Sci. Rep. 7, 2196 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Fletcher, M. D., Cunningham, R. O. & Mills, S. R. Electro-haptic enhancement of spatial hearing in cochlear implant users. Sci. Rep. 10, 1621 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Fletcher, M. D., Mills, S. R. & Goehring, T. Vibro-tactile enhancement of speech intelligibility in multi-talker noise for simulated cochlear implant listening. Trends Hear. 22, 1–11 (2018).


    Google Scholar
     

  • 10.

    Fletcher, M. D., Thini, N. & Perry, S. W. Enhanced pitch discrimination for cochlear implant users with a new haptic neuroprosthetic. Sci. Rep. 11, 10354 (2020).


    Google Scholar
     

  • 11.

    Dirks, D. D. & Wilson, R. H. The effect of spatially separated sound sources on speech intelligibility. J. Speech Hear. Res 12, 5–38 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    MacKeith, N. W. & Coles, R. R. Binaural advantages in hearing of speech. J. Laryngol. Otol. 85, 213–232 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Bronkhorst, A. W. & Plomp, R. The effect of head-induced interaural time and level differences on speech intelligibility in noise. J. Acoust. Soc. Am. 83, 1508–1516 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Peters, B. R., Wyss, J. & Manrique, M. Worldwide trends in bilateral cochlear implantation. Laryngoscope 120(Suppl 2), 17–44 (2010).


    Google Scholar
     

  • 15.

    Litovsky, R. Y. et al. Bilateral cochlear implants in children: localization acuity measured with minimum audible angle. Ear Hear. 27, 43–59 (2006).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Muller, J., Schon, F. & Helms, J. Speech understanding in quiet and noise in bilateral users of the MED-EL COMBI 40/40+ cochlear implant system. Ear Hear. 23, 198–206 (2002).

    PubMed 

    Google Scholar
     

  • 17.

    Tyler, R. S. et al. Three-month results with bilateral cochlear implants. Ear Hear. 23, 80–89 (2002).


    Google Scholar
     

  • 18.

    van Hoesel, R. J. M. & Tyler, R. S. Speech perception, localization, and lateralization with bilateral cochlear implants. J. Acoust. Soc. Am. 113, 1617–1630 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • 19.

    Litovsky, R. Y., Parkinson, A. & Arcaroli, J. Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear Hear. 30, 419–431 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Mok, M., Galvin, K. L., Dowell, R. C. & McKay, C. M. Spatial unmasking and binaural advantage for children with normal hearing, a cochlear implant and a hearing aid, and bilateral implants. Audiol. Neurootol. 12, 295–306 (2007).

    PubMed 

    Google Scholar
     

  • 21.

    Smulders, Y. E. et al. Comparison of bilateral and unilateral cochlear implantation in adults: a randomized clinical trial. JAMA Otolaryngol. Head Neck Surg. 142, 249–256 (2016).

    PubMed 

    Google Scholar
     

  • 22.

    Allen, K., Alais, D. & Carlile, S. Speech intelligibility reduces over distance from an attended location: evidence for an auditory spatial gradient of attention. Atten. Percept. Psychophys. 71, 164–173 (2009).

    PubMed 

    Google Scholar
     

  • 23.

    Teder-Salejarvi, W. A. & Hillyard, S. A. The gradient of spatial auditory attention in free field: an event-related potential study. Percept. Psychophys. 60, 1228–1242 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Rhodes, G. Auditory attention and the representation of spatial information. Percept. Psychophys. 42, 1–14 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Dorman, M. F. & Gifford, R. H. Combining acoustic and electric stimulation in the service of speech recognition. Int. J. Audiol. 49, 912–919 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Gifford, R. H. et al. Combined electric and acoustic stimulation with hearing preservation: effect of cochlear implant low-frequency cutoff on speech understanding and perceived listening difficulty. Ear Hear. 38, 539–553 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Gifford, R. H. et al. Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear. 34, 413–425 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Verschuur, C., Hellier, W. & Teo, C. An evaluation of hearing preservation outcomes in routine cochlear implant care: Implications for candidacy. Cochlear Implants Int. 17(Suppl 1), 62–65 (2016).

    PubMed 

    Google Scholar
     

  • 29.

    Byrne, D. et al. An international comparison of long-term average speech spectra. J. Acoust. Soc. Am. 96, 2108–2120 (1994).

    ADS 

    Google Scholar
     

  • 30.

    Feddersen, W. E., Sandel, T. T., Teas, D. C. & Jeffress, L. A. Localization of high-frequency tone. J. Acoust. Soc. Am. 29, 988–991 (1957).

    ADS 

    Google Scholar
     

  • 31.

    Brosch, M., Selezneva, E. & Scheich, H. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks. Eur. J. Neurosci. 41, 603–614 (2015).

    PubMed 

    Google Scholar
     

  • 32.

    Rahne, T., Bockmann, M., von Specht, H. & Sussman, E. S. Visual cues can modulate integration and segregation of objects in auditory scene analysis. Brain Res. 1144, 127–135 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Atilgan, H. et al. Integration of visual information in auditory cortex promotes auditory scene analysis through multisensory binding. Neuron 97, 640–655 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bertelson, P. & Radeau, M. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept. Psychophys. 29, 578–584 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Bermant, R. I. & Welch, R. B. Effect of degree of separation of visual-auditory stimulus and eye position upon spatial interaction of vision and audition. Percept. Mot. Skills 42, 487–493 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Peelle, J. E. & Sommers, M. S. Prediction and constraint in audiovisual speech perception. Cortex 68, 169–181 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Sumby, W. H. & Pollack, I. Visual contribution to speech intelligibility in noise. J. Acoust. Soc. Am. 26, 212–215 (1954).

    ADS 

    Google Scholar
     

  • 38.

    Crosse, M. J., Butler, J. S. & Lalor, E. C. Congruent visual speech enhances cortical entrainment to continuous auditory speech in noise-free conditions. J. Neurosci. 35, 14195–14204 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Crosse, M. J., Di Liberto, G. M. & Lalor, E. C. Eye can hear clearly now: Inverse effectiveness in natural audiovisual speech processing relies on long-term crossmodal temporal integration. J. Neuro. 36, 9888–9895 (2016).

    CAS 

    Google Scholar
     

  • 40.

    Luo, H., Liu, Z. X. & Poeppel, D. Auditory cortex tracks both auditory and visual stimulus dynamics using low-frequency neuronal phase modulation. PLoS Biol. 8, 1000445 (2010).


    Google Scholar
     

  • 41.

    Park, H., Kayser, C., Thut, G. & Gross, J. Lip movements entrain the observers’ low-frequency brain oscillations to facilitate speech intelligibility. Elife 5, 14521 (2016).


    Google Scholar
     

  • 42.

    Kishon-Rabin, L., Boothroyd, A. & Hanin, L. Speechreading enhancement: a comparison of spatial-tactile display of voice fundamental frequency (F-0) with auditory F-0. J. Acoust. Soc. Am. 100, 593–602 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Skinner, M. W. et al. Comparison of benefit from vibrotactile aid and cochlear implant for postlinguistically deaf adults. Laryngoscope 98, 1092–1099 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Oxenham, A. J. & Kreft, H. A. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing. Trends Hear. 18, 233 (2014).


    Google Scholar
     

  • 45.

    Dawson, P. W., Mauger, S. J. & Hersbach, A. A. Clinical evaluation of signal-to-noise ratio-based noise reduction in nucleus (R) cochlear implant recipients. Ear Hear. 32, 382–390 (2011).

    PubMed 

    Google Scholar
     

  • 46.

    Goehring, T. et al. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Hear. Res. 344, 183–194 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    ISO-13091-1:2001. Mechanical Vibration-Vibrotactile Perception Thresholds for the Assessment of Nerve Dysfunction-Part 1: Methods of Measurement at the Fingertips. International Organisation for Standardization (2001).

  • 48.

    Keidser, G. et al. The National Acoustic Laboratories (NAL) CDs of speech and noise for hearing aid evaluation: normative data and potential applications. Austra. N. Zeal. J. Audiol. 1, 16–35 (2002).


    Google Scholar
     

  • 49.

    Denk, F., Ernst, S. M. A., Ewert, S. D. & Kollmeier, B. Adapting hearing devices to the individual ear acoustics: database and target response correction functions for various device styles. Trends Hear. 22, 1–10 (2018).


    Google Scholar
     

  • 50.

    Glasberg, B. R. & Moore, B. C. Derivation of auditory filter shapes from notched-noise data. Hear. Res. 47, 103–138 (1990).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *