CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS 

    Google Scholar
     

  • 2.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).


    Google Scholar
     

  • 3.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 

    Google Scholar
     

  • 4.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS 

    Google Scholar
     

  • 5.

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    CAS 

    Google Scholar
     

  • 6.

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    CAS 

    Google Scholar
     

  • 7.

    Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14, 5590–5597 (2014).

    CAS 

    Google Scholar
     

  • 8.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 

    Google Scholar
     

  • 9.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    CAS 

    Google Scholar
     

  • 11.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS 

    Google Scholar
     

  • 12.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS 

    Google Scholar
     

  • 13.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals Crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS 

    Google Scholar
     

  • 14.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS 

    Google Scholar
     

  • 15.

    De Jongh, L. J. Experiments on simple magnetic model systems. J. Appl. Phys. 49, 1305–1310 (1978).


    Google Scholar
     

  • 16.

    Lines, M. E. Magnetism in two dimensions. J. Appl. Phys. 40, 1352–1358 (1969).


    Google Scholar
     

  • 17.

    Cortie, D. L. et al. Two-dimensional magnets: forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater. 2019, 1901414 (2019).


    Google Scholar
     

  • 18.

    Vaz, C. A. F., Bland, J. A. C. & Lauhoff, G. Magnetism in ultrathin film structures. Reports Prog. Phys. 71, 056501 (2008).


    Google Scholar
     

  • 19.

    Bhattacharya, A. & May, S. J. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44, 65–90 (2014).

    CAS 

    Google Scholar
     

  • 20.

    Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    CAS 

    Google Scholar
     

  • 21.

    Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    CAS 

    Google Scholar
     

  • 22.

    Savary, L. & Balents, L. Quantum spin liquids: a review. Reports Prog. Phys. 80, 016502 (2017).


    Google Scholar
     

  • 23.

    Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    CAS 

    Google Scholar
     

  • 24.

    Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    CAS 

    Google Scholar
     

  • 26.

    Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS 

    Google Scholar
     

  • 27.

    Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    CAS 

    Google Scholar
     

  • 28.

    Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).


    Google Scholar
     

  • 29.

    Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    CAS 

    Google Scholar
     

  • 30.

    Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).

    CAS 

    Google Scholar
     

  • 31.

    Klein, D. R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255–1260 (2019).

    CAS 

    Google Scholar
     

  • 32.

    Norden, T. et al. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun. 10, 4163 (2019).


    Google Scholar
     

  • 33.

    Kim, M. et al. Hall micromagnetometry of individual two-dimensional ferromagnets. Nat. Electron. 2, 457–463 (2019).

    CAS 

    Google Scholar
     

  • 34.

    Alghamdi, M. et al. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 19, 4400–4405 (2019).

    CAS 

    Google Scholar
     

  • 35.

    Ostwal, V., Shen, T. & Appenzeller, J. Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 32, 1906021 (2020).

    CAS 

    Google Scholar
     

  • 36.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).


    Google Scholar
     

  • 37.

    Seyler, K. L. et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 18, 3823–3828 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    CAS 

    Google Scholar
     

  • 39.

    Liu, C. et al. Quantum phase transition from axion insulator to Chern insulator in MnBi2Te4. Nat. Mater. 19, 522–527 (2020).

    CAS 

    Google Scholar
     

  • 40.

    Brec, R. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).

    CAS 

    Google Scholar
     

  • 41.

    Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).


    Google Scholar
     

  • 42.

    Kim, K. et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater. 6, 041001 (2019).

    CAS 

    Google Scholar
     

  • 43.

    Sun, Y. J., Tan, Q. H., Liu, X. L., Gao, Y. F. & Zhang, J. Probing the magnetic ordering of antiferromagnetic MnPS3 by Raman spectroscopy. J. Phys. Chem. Lett. 10, 3087–3093 (2019).

    CAS 

    Google Scholar
     

  • 44.

    Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv. Mater. 29, 1602852 (2017).


    Google Scholar
     

  • 45.

    Jernberg, P., Bjarman, S. & Wäppling, R. FePS3: a first-order phase transition in a ‘2D’ Ising antiferromagnet. J. Magn. Magn. Mater. 46, 178–190 (1984).

    CAS 

    Google Scholar
     

  • 46.

    Rule, K. C., McIntyre, G. J., Kennedy, S. J. & Hicks, T. J. Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007).


    Google Scholar
     

  • 47.

    Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).


    Google Scholar
     

  • 48.

    Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).

    CAS 

    Google Scholar
     

  • 49.

    Lançon, D., Ewings, R. A., Guidi, T., Formisano, F. & Wildes, A. R. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 98, 134414 (2018).


    Google Scholar
     

  • 50.

    Lee, J. U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    CAS 

    Google Scholar
     

  • 51.

    McCreary, A. et al. Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy. Phys. Rev. B 101, 064416 (2020).

    CAS 

    Google Scholar
     

  • 52.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    CAS 

    Google Scholar
     

  • 53.

    O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).


    Google Scholar
     

  • 54.

    May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    CAS 

    Google Scholar
     

  • 55.

    Yan, J. Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS 

    Google Scholar
     

  • 56.

    Chen, B. et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 10, 4469 (2019).


    Google Scholar
     

  • 57.

    Wu, J. et al. Natural van der Waals heterostructures with tunable magnetic and topological states. Sci. Adv. 5, eaax9989 (2019).

    CAS 

    Google Scholar
     

  • 58.

    Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    CAS 

    Google Scholar
     

  • 59.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    CAS 

    Google Scholar
     

  • 60.

    Ge, J. et al. High-chern-number and high-temperature quantum hall effect without landau levels. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwaa089 (2020).

  • 61.

    Carteaux, V., Brunet, D., Ouvrard, G. & Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 7, 69–87 (1995).

    CAS 

    Google Scholar
     

  • 62.

    Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).


    Google Scholar
     

  • 63.

    Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    CAS 

    Google Scholar
     

  • 64.

    Chen, B. et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J. Phys. Soc. Japan 82, 124711 (2013).


    Google Scholar
     

  • 65.

    Yi, J. et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 4, 011005 (2016).


    Google Scholar
     

  • 66.

    Deiseroth, H. J., Aleksandrov, K., Reiner, C., Kienle, L. & Kremer, R. K. Fe3GeTe2 and Ni3GeTe2 – two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 1561–1567 (2006).


    Google Scholar
     

  • 67.

    Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).


    Google Scholar
     

  • 68.

    May, A. F., Calder, S., Cantoni, C., Cao, H. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3-xGeTe2. Phys. Rev. B 93, 014411 (2016).


    Google Scholar
     

  • 69.

    Desai, S. B. et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28, 4053–4058 (2016).

    CAS 

    Google Scholar
     

  • 70.

    Velický, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018).


    Google Scholar
     

  • 71.

    Magda, G. Z. et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5, 14714 (2015).

    CAS 

    Google Scholar
     

  • 72.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    CAS 

    Google Scholar
     

  • 73.

    Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    CAS 

    Google Scholar
     

  • 74.

    Liu, S. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films were grown by molecular beam epitaxy. npj 2D Mater. Appl. 1, 30 (2017).


    Google Scholar
     

  • 75.

    Weber, D., Trout, A. H., McComb, D. W. & Goldberger, J. E. Decomposition-induced room-temperature magnetism of the Na-intercalated layered ferromagnet Fe3-xGeTe2. Nano Lett. 19, 5031–5035 (2019).

    CAS 

    Google Scholar
     

  • 76.

    van Bruggen, C. F. & Haas, C. Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 20, 251–254 (1976).


    Google Scholar
     

  • 77.

    Bayard, M. & Sienko, M. J. Anomalous electrical and magnetic properties of vanadium diselenide. J. Solid State Chem. 19, 325–329 (1976).

    CAS 

    Google Scholar
     

  • 78.

    Onari, S. & Arai, T. Infrared lattice vibrations and dielectric dispersion in antiferromagnetic semiconductor MnSe2. J. Phys. Soc. Japan 46, 184–188 (1979).

    CAS 

    Google Scholar
     

  • 79.

    Pollard, R. J., McCann, V. H. & Ward, J. B. Magnetic structures of α-MnS and MnSe from 57Fe Mossbauer spectroscopy. J. Phys. C Solid State Phys. 16, 345–353 (1983).

    CAS 

    Google Scholar
     

  • 80.

    Duvjir, G. et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett. 18, 5432–5438 (2018).

    CAS 

    Google Scholar
     

  • 81.

    Ma, Y. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).

    CAS 

    Google Scholar
     

  • 82.

    Kan, M., Adhikari, S. & Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16, 4990–4994 (2014).

    CAS 

    Google Scholar
     

  • 83.

    Fumega, A. O. et al. Absence of ferromagnetism in VSe2 caused by its charge density wave phase. J. Phys. Chem. C 123, 27802–27810 (2019).

    CAS 

    Google Scholar
     

  • 84.

    Coelho, P. et al. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123, 14089–14096 (2019).

    CAS 

    Google Scholar
     

  • 85.

    Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).


    Google Scholar
     

  • 86.

    Wong, P. K. J. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 31, 1901185 (2019).


    Google Scholar
     

  • 87.

    Feng, J. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 18, 4493–4499 (2018).

    CAS 

    Google Scholar
     

  • 88.

    Kong, T. et al. VI3 – a new layered ferromagnetic semiconductor. Adv. Mater. 31, 1808074 (2019).


    Google Scholar
     

  • 89.

    Tian, S. et al. Ferromagnetic van der Waals Crystal VI3. J. Am. Chem. Soc. 141, 5326–5333 (2019).

    CAS 

    Google Scholar
     

  • 90.

    Son, S. et al. Bulk properties of the van der Waals hard ferromagnet VI3. Phys. Rev. B 99, 041402 (2019).

    CAS 

    Google Scholar
     

  • 91.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    CAS 

    Google Scholar
     

  • 92.

    Zhang, W. B., Qu, Q., Zhu, P. & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 3, 12457–12468 (2015).

    CAS 

    Google Scholar
     

  • 93.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    CAS 

    Google Scholar
     

  • 94.

    Morosin, B. & Narath, A. X-ray diffraction and nuclear quadrupole resonance studies of chromium trichloride. J. Chem. Phys. 40, 1958–1967 (1964).

    CAS 

    Google Scholar
     

  • 95.

    McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater. 1, 014001 (2017).


    Google Scholar
     

  • 96.

    Wang, H., Fan, F., Zhu, S. & Wu, H. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. Europhys. Lett. 114, 47001 (2016).


    Google Scholar
     

  • 97.

    Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    CAS 

    Google Scholar
     

  • 98.

    Hansen, W. N. Some magnetic properties of the chromium (III) halides at 4.2°K. J. Appl. Phys. 30, 304S–305S (1959).

    CAS 

    Google Scholar
     

  • 99.

    Tsubokawa, I. On the magnetic properties of a CrBr3 single crystal. J. Phys. Soc. Japan 15, 1664–1668 (1960).

    CAS 

    Google Scholar
     

  • 100.

    Narath, A. Low-temperature sublattice magnetization of antiferromagnetic CrCl3. Phys. Rev. 131, 1929–1942 (1963).


    Google Scholar
     

  • 101.

    Narath, A. & Davis, H. L. Spin-wave analysis of the sublattice magnetization behavior of antiferromagnetic and ferromagnetic CrCl3. Phys. Rev. 137, A163–A178 (1965).


    Google Scholar
     

  • 102.

    Kuhlow, B. Magnetic ordering in CrCl3 at the phase transition. Phys. Status Solidi 72, 161–168 (1982).

    CAS 

    Google Scholar
     

  • 103.

    Bené, R. W. Electron-paramagnetic-resonance study of Cr ions and exchange-coupled Cr ion pairs in the BiI3 structure. Phys. Rev. 178, 497–513 (1969).


    Google Scholar
     

  • 104.

    Abramchuk, M. et al. Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry. Adv. Mater. 30, 1801325 (2018).


    Google Scholar
     

  • 105.

    Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019).


    Google Scholar
     

  • 106.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS 

    Google Scholar
     

  • 107.

    Hellwig, O., Berger, A., Kortright, J. B. & Fullerton, E. E. Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films. J. Magn. Magn. Mater. 319, 13–55 (2007).

    CAS 

    Google Scholar
     

  • 108.

    Chen, B. et al. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science 357, 191–194 (2017).

    CAS 

    Google Scholar
     

  • 109.

    Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single spin microscopy. Science 364, 973–976 (2019).

    CAS 

    Google Scholar
     

  • 110.

    Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    CAS 

    Google Scholar
     

  • 111.

    Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    CAS 

    Google Scholar
     

  • 112.

    Zhang, Z. et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 19, 3138–3142 (2019).

    CAS 

    Google Scholar
     

  • 113.

    Jagla, E. A. Hysteresis loops of magnetic thin films with perpendicular anisotropy. Phys. Rev. B 72, 094406 (2005).


    Google Scholar
     

  • 114.

    Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    CAS 

    Google Scholar
     

  • 115.

    Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

    CAS 

    Google Scholar
     

  • 116.

    Ubrig, N. et al. Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals. 2D Mater. 7, 015007 (2020).


    Google Scholar
     

  • 117.

    Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    CAS 

    Google Scholar
     

  • 118.

    MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).

    CAS 

    Google Scholar
     

  • 119.

    Chen, W. et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 366, 983–987 (2019).

    CAS 

    Google Scholar
     

  • 120.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS 

    Google Scholar
     

  • 121.

    Cai, T. et al. Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides. Phys. Rev. B 88, 115140 (2013).


    Google Scholar
     

  • 122.

    Stier, A. V. et al. Magnetooptics of exciton rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057406 (2018).


    Google Scholar
     

  • 123.

    Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

    CAS 

    Google Scholar
     

  • 124.

    Huang, S. Y. et al. Transport magnetic proximity effects in platinum. Phys. Rev. Lett. 109, 107204 (2012).

    CAS 

    Google Scholar
     

  • 125.

    Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).


    Google Scholar
     

  • 126.

    Lohmann, M. et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous hall effect in Pt. Nano Lett. 19, 2397–2403 (2019).

    CAS 

    Google Scholar
     

  • 127.

    Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 5, eaaw8904 (2019).

    CAS 

    Google Scholar
     

  • 128.

    Yu, X. et al. Large magnetocaloric effect in van der Waals crystal CrBr3. Front. Phys. 14, 6–10 (2019).


    Google Scholar
     

  • 129.

    Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    CAS 

    Google Scholar
     

  • 130.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS 

    Google Scholar
     

  • 131.

    Wu, Z., Yu, J. & Yuan, S. Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys. Chem. Chem. Phys. 21, 7750–7755 (2019).

    CAS 

    Google Scholar
     

  • 132.

    Shcherbakov, D. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 18, 4214–4219 (2018).

    CAS 

    Google Scholar
     

  • 133.

    Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212–216 (2020).

    CAS 

    Google Scholar
     

  • 134.

    Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    CAS 

    Google Scholar
     

  • 135.

    Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    CAS 

    Google Scholar
     

  • 136.

    Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).


    Google Scholar
     

  • 137.

    Casola, F., Van Der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *