CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    EPA. Emerging contaminants—polybrominated diphenyl ethers (PBDE) and polybrominated biphenyls (PBB). (United States Environment Protection Agency, 2008).

  • 2.

    Pereira, L. C. et al. A perspective on the potential risks of emerging contaminants to human and environmental health. Environ. Sci. Pollut. Res. Int. 22, 13800–13823 (2015).

    CAS 

    Google Scholar
     

  • 3.

    Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat Reviews. Nat. Rev. Microbiol. 13, 310–317 (2015).

    CAS 

    Google Scholar
     

  • 4.

    Richardson, S. D. & Ternes, T. A. Water analysis: emerging contaminants and current issues. Anal. Chem. 90, 398–428 (2018).

    CAS 

    Google Scholar
     

  • 5.

    Richmond, E. K. et al. Pharmaceuticals and personal care products (PPCPs) are ecological disrupting compounds (EcoDC). Elementa 5, 66 (2017).


    Google Scholar
     

  • 6.

    Zenker, A., Cicero, M. R., Prestinaci, F., Bottoni, P. & Carere, M. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J. Environ. Manag. 133, 378–387 (2014).

    CAS 

    Google Scholar
     

  • 7.

    Houtman, C. J. Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. J. Integr. Environ. Sci. 7, 271–295 (2010).


    Google Scholar
     

  • 8.

    Pal, A., He, Y., Jekel, M., Reinhard, M. & Gin, K. Y.-H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 71, 46–62 (2014).

    CAS 

    Google Scholar
     

  • 9.

    Gabarrón, S. et al. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology. J. Hazard Mater. 309, 192–201 (2016).


    Google Scholar
     

  • 10.

    Peng, Y., Gautam, L. & Hall, S. W. The detection of drugs of abuse and pharmaceuticals in drinking water using solid-phase extraction and liquid chromatography-mass spectrometry. Chemosphere 223, 438–447 (2019).

    CAS 

    Google Scholar
     

  • 11.

    Kot-Wasik, A., Jakimska, A. & Sliwka-Kaszynska, M. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ. Monit. Assess. 188, 661 (2016).

    CAS 

    Google Scholar
     

  • 12.

    Tabe, S., Pileggi, V., Nowierski, M., Kleywegt, S. & Yang, P. Occurrence, removal, and environmental impacts of emerging contaminants detected in water and wastewater in Southern Ontario—Part I: occurrence and removal. Water Process. Technol. 11, 298–314 (2016).


    Google Scholar
     

  • 13.

    Benson, R. et al. Human health screening and public health significance of contaminants of emerging concern detected in public water supplies. Sci. Total Environ. 579, 1643–1648 (2017).

    CAS 

    Google Scholar
     

  • 14.

    del Carmen Salvatierra-Stamp, V., Ceballos-Magaña, S. G., Gonzalez, J., Ibarra-Galván, V. & Muñiz-Valencia, R. Analytical method development for the determination of emerging contaminants in water using supercritical-fluid chromatography coupled with diode-array detection. Anal. Bioanal. Chem. 407, 4219–4226 (2015).


    Google Scholar
     

  • 15.

    Glassmeyer, S. T. et al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci. Total Environ. 581–582, 909–922 (2017).


    Google Scholar
     

  • 16.

    Lempart, A., Kudlek, E. & Dudziak, M. Determination of micropollutants in water samples from swimming pool systems. Water 10, 1083 (2018).


    Google Scholar
     

  • 17.

    Ye, J., Rensing, C., Su, J. & Zhu, Y.-G. From chemical mixtures to antibiotic resistance. J. Environ. Sci. 62, 138–144 (2017).


    Google Scholar
     

  • 18.

    Flemming, H. C., Percival, S. L. & Walker, J. T. Contamination potential of biofilms in water distribution systems. Water Supply 2, 271–280 (2002).

    CAS 

    Google Scholar
     

  • 19.

    Ji, P., Rhoads, W. J., Edwards, M. A. & Pruden, A. Impact of water heater temperature setting and water use frequency on the building plumbing microbiome. ISME J. 11, 1318–1330 (2017).


    Google Scholar
     

  • 20.

    Collier, S. et al. Estimating the burden of waterborne disease in the United States. Open Forum Infect. Dis. 6, S53–S54 (2019). 1887.


    Google Scholar
     

  • 21.

    Percival, S. L., Walker, J. T. & Hunter, P. R. Biofilm Formation in Potable Water (CRC Press, 2000).

  • 22.

    Petrović, M., Gonzalez, S. & Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal. Chem. 22, 685–696 (2003).


    Google Scholar
     

  • 23.

    Rigobello, E. S., Dantas, A. D. B., Di Bernardo, L. & Vieira, E. M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere 92, 184–191 (2013).

    CAS 

    Google Scholar
     

  • 24.

    Pojana, G., Fantinati, A. & Marcomini, A. Occurrence of environmentally relevant pharmaceuticals in Italian drinking water treatment plants AU – Pojana, Giulio. Int. J. Environ. Anal. Chem. 91, 537–552 (2011).

    CAS 

    Google Scholar
     

  • 25.

    Tröger, R., Klöckner, P., Ahrens, L. & Wiberg, K. Micropollutants in drinking water from source to tap – Method development and application of a multiresidue screening method. Sci. Total Environ. 627, 1404–1432 (2018).


    Google Scholar
     

  • 26.

    Simões, L. & Simões, M. Biofilms in drinking water: problems and solutions. RSC Adv. 3, 2520–2533 (2013).


    Google Scholar
     

  • 27.

    Subirats, J. et al. Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities. Water Res. 138, 77–85 (2018).

    CAS 

    Google Scholar
     

  • 28.

    Wang, J. et al. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. Environ. Pollut. 231, 1145–1152 (2017).

    CAS 

    Google Scholar
     

  • 29.

    Proia, L., Morin, S., Peipoch, M., Romani, A. M. & Sabater, S. Resistance and recovery of river biofilms receiving short pulses of triclosan and diuron. Sci. Total Environ. 409, 3129–3137 (2011).

    CAS 

    Google Scholar
     

  • 30.

    Thelusmond, J. R., Kawka, E., Strathmann, T. J. & Cupples, A. M. Diclofenac, carbamazepine and triclocarban biodegradation in agricultural soils and the microorganisms and metabolic pathways affected. Sci. Total Environ. 640641, 1393–1410 (2018).


    Google Scholar
     

  • 31.

    Barry, M. J. Fluoxetine inhibits predator avoidance behavior in tadpoles. Toxicol. Environ. Chem. 96, 641–649 (2014).

    CAS 

    Google Scholar
     

  • 32.

    Brodin, T., Fick, J., Jonsson, M. & Klaminder, J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339, 814–815 (2013).

    CAS 

    Google Scholar
     

  • 33.

    Luis, L. G., Barreto, A., Trindade, T., Soares, A. M. & Oliveira, M. Effects of emerging contaminants on neurotransmission and biotransformation in marine organisms—an in vitro approach. Mar. Pollut. Bull. 106, 236–244 (2016).

    CAS 

    Google Scholar
     

  • 34.

    Meador, J. P., Yeh, A. & Gallagher, E. P. Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. Environ. Pollut. 236, 850–861 (2018).

    CAS 

    Google Scholar
     

  • 35.

    Yeh, A., Marcinek, D. J., Meador, J. P. & Gallagher, E. P. Effect of contaminants of emerging concern on liver mitochondrial function in Chinook salmon. Aquat. Toxicol. 190, 21–31 (2017).

    CAS 

    Google Scholar
     

  • 36.

    Proia, L. et al. Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. Environ. Pollut. 178, 220–228 (2013).

    CAS 

    Google Scholar
     

  • 37.

    Wang, Y. et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME J. 13, 509–522 (2019).

    CAS 

    Google Scholar
     

  • 38.

    Ma, T. et al. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. Eur. J. Soil Biol. 76, 53–60 (2016).

    CAS 

    Google Scholar
     

  • 39.

    Kraigher, B., Kosjek, T., Heath, E., Kompare, B. & Mandic-Mulec, I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 42, 4578–4588 (2008).

    CAS 

    Google Scholar
     

  • 40.

    Wang, H. et al. Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. Chemosphere 218, 197–204 (2019).

    CAS 

    Google Scholar
     

  • 41.

    Ghiglione, J.-F., Martin-Laurent, F. & Pesce, S. Microbial ecotoxicology: an emerging discipline facing contemporary environmental threats. Environ. Sci. Pollut. Res. Int. 23, 3981–3983 (2016).


    Google Scholar
     

  • 42.

    Aristi, I. et al. Nutrients versus emerging contaminants—or a dynamic match between subsidy and stress effects on stream biofilms. Environ. Pollut. 212, 208–215 (2016).

    CAS 

    Google Scholar
     

  • 43.

    Harris, J. Soil microbial communities and restoration ecology: facilitators or followers? Science 325, 573–574 (2009).

    CAS 

    Google Scholar
     

  • 44.

    Besemer, K. Biodiversity, community structure and function of biofilms in stream ecosystems. Res. Microbiol. 166, 774–781 (2015).


    Google Scholar
     

  • 45.

    Proia, L. et al. Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere 92, 1126–1135 (2013).

    CAS 

    Google Scholar
     

  • 46.

    Snow, D. D. et al. Detection, occurrence and fate of emerging contaminants in agricultural environments. Water Environ. Res. 89, 897–920 (2017).

    CAS 

    Google Scholar
     

  • 47.

    Brennan, G. & Collins, S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Change 5, 892 (2015).


    Google Scholar
     

  • 48.

    Zhang, L., Dong, D., Hua, X. & Guo, Z. Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms. Sci. Total Environ. 625, 178–184 (2018).

    CAS 

    Google Scholar
     

  • 49.

    Balcázar, J. L., Subirats, J. & Borrego, C. M. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 6, 1216–1216 (2015).


    Google Scholar
     

  • 50.

    Santos, L. H. M. L. M. et al. Impact of fullerenes in the bioaccumulation and biotransformation of venlafaxine, diuron and triclosan in river biofilms. Environ. Res. 169, 377–386 (2019).

    CAS 

    Google Scholar
     

  • 51.

    Russell, A. D. Bacterial outer membrane and cell wall penetration and cell destruction by polluting chemical agents and physical conditions. Sci. Prog. 86, 283–311 (2003).

    CAS 

    Google Scholar
     

  • 52.

    Feng, C. et al. Uptake mechanism of di-n-butyl phthalate by Novosphingobium species DNB-S3. Int Biodeterior. Biodegr. 148, 104910 (2020).

    CAS 

    Google Scholar
     

  • 53.

    Geng, N. et al. Bioaccumulation of potentially toxic elements by submerged plants and biofilms: a critical review. Environ. Int. 131, 105015 (2019).

    CAS 

    Google Scholar
     

  • 54.

    Kim, S. W. et al. Outer membrane vesicles from beta-lactam-resistant Escherichia coli enable the survival of beta-lactam-susceptible E. coli in the presence of beta-lactam antibiotics. Sci. Rep. 8, 5402 (2018).


    Google Scholar
     

  • 55.

    Wang, L. et al. Influence of organic carbon fractions of freshwater biofilms on the sorption for phenanthrene and ofloxacin: the important role of aliphatic carbons. Sci. Total Environ. 685, 818–826 (2019).

    CAS 

    Google Scholar
     

  • 56.

    Hu, X. et al. Extracellular polymeric substances acting as a permeable barrier hinder the lateral transfer of antibiotic resistance genes. Front. Microbiol. 10, 736 (2019).


    Google Scholar
     

  • 57.

    Drury, B., Scott, J., Rosi-Marshall, E. J. & Kelly, J. J. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ. Sci. Technol. 47, 8923–8930 (2013).

    CAS 

    Google Scholar
     

  • 58.

    Qiu, W. et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: association with antibiotic resistance genes and microbial community. Sci. Total Environ. 653, 334–341 (2019).

    CAS 

    Google Scholar
     

  • 59.

    Corcoll, N. et al. Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. Sci. Total Environ. 503, 159–170 (2015).


    Google Scholar
     

  • 60.

    Lee, S. S. et al. Occurrence and potential biological effects of amphetamine on stream communities. Environ. Sci. Technol. 50, 9727–9735 (2016).

    CAS 

    Google Scholar
     

  • 61.

    Rosi-Marshall, E. J. et al. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. Ecol. Appl. 23, 583–593 (2013).


    Google Scholar
     

  • 62.

    Zhai, Y. et al. Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates. Aquat. Sci. 80, 44–51 (2018).


    Google Scholar
     

  • 63.

    Fabrega, J., Zhang, R., Renshaw, J. C., Liu, W.-T. & Lead, J. R. Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere 85, 961–966 (2011).

    CAS 

    Google Scholar
     

  • 64.

    Das, P. et al. Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ. Sci. Technol. 46, 9120–9128 (2012).

    CAS 

    Google Scholar
     

  • 65.

    Sendra, M., Moreno-Garrido, I., Blasco, J. & Araujo, C. V. M. Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environ. Pollut. 242, 357–366 (2018).

    CAS 

    Google Scholar
     

  • 66.

    Binh, C. T., Tong, T., Gaillard, J. F., Gray, K. A. & Kelly, J. J. Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO2. Environ. Toxicol. Chem. 33, 317–327 (2014).

    CAS 

    Google Scholar
     

  • 67.

    Tollefsen, K. E., Nizzetto, L. & Huggett, D. B. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment. Sci. Total Environ. 438, 510–516 (2012).

    CAS 

    Google Scholar
     

  • 68.

    Sang, Z., Jiang, Y., Tsoi, Y.-K. & Leung, K. S.-Y. Evaluating the environmental impact of artificial sweeteners: A study of their distributions, photodegradation and toxicities. Water Res. 52, 260–274 (2014).

    CAS 

    Google Scholar
     

  • 69.

    Ebele, A. J., Abou-Elwafa Abdallah, M. & Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3, 1–16 (2017).


    Google Scholar
     

  • 70.

    Gao, Y. et al. New theoretical insight into indirect photochemical transformation of fragrance nitro-musks: Mechanisms, eco-toxicity and health effects. Environ. Int. 129, 68–75 (2019).

    CAS 

    Google Scholar
     

  • 71.

    Segev, O., Kushmaro, A. & Brenner, A. Environmental impact of flame retardants (persistence and biodegradability). Int J. Environ. Res. Public Health 6, 478–491 (2009).

    CAS 

    Google Scholar
     

  • 72.

    Houde, M., De Silva, A. O., Muir, D. C. G. & Letcher, R. J. Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ. Sci. Technol. 45, 7962–7973 (2011).

    CAS 

    Google Scholar
     

  • 73.

    Werner, I., Koger, C. S., Deanovic, L. A. & Hinton, D. E. Toxicity of methyl-tert-butyl ether to freshwater organisms. Environ. Pollut. 111, 83–88 (2001).

    CAS 

    Google Scholar
     

  • 74.

    M., S. in Reviews of Environmental Contamination and Toxicology Vol. 152 (ed Ware G. W.) (Springer, 1997).

  • 75.

    Gomes, I. B., Simões, L. C. & Simões, M. The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Sci. Total Environ. 643, 1348–1356 (2018).

    CAS 

    Google Scholar
     

  • 76.

    Gomes, I. B., Madureira, D., Simões, L. C. & Simões, M. The effects of pharmaceutical and personal care products on the behavior of Burkholderia cepacia isolated from drinking water. Int. Biodeterior. Biodegr. 141, 87–93 (2018).


    Google Scholar
     

  • 77.

    Gomes, I. B. et al. Prolonged exposure of Stenotrophomonas maltophilia biofilms to trace levels of clofibric acid alters antimicrobial tolerance and virulence. Chemosphere 235, 327–335 (2019).

    CAS 

    Google Scholar
     

  • 78.

    Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    CAS 

    Google Scholar
     

  • 79.

    Baharoglu, Z., Garriss, G. & Mazel, D. Multiple pathways of genome plasticity leading to development of antibiotic resistance. Antibiotics 2, 288–315 (2013).

    CAS 

    Google Scholar
     

  • 80.

    Ma, L., Li, B. & Zhang, T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 152, 191–201 (2019).

    CAS 

    Google Scholar
     

  • 81.

    Xi, C. et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75, 5714 (2009).

    CAS 

    Google Scholar
     

  • 82.

    Farkas, A. et al. Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. Sci. Total Environ. 443, 932–938 (2013).

    CAS 

    Google Scholar
     

  • 83.

    Sanganyado, E. & Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total Environ. 669, 785–797 (2019).

    CAS 

    Google Scholar
     

  • 84.

    Ma, Q. et al. A waterborne outbreak of Shigella sonnei with resistance to azithromycin and third-generation cephalosporins in China in 2015. Antimicrob. Agents Chemother. 61, e00308–e00317 (2017).


    Google Scholar
     

  • 85.

    Qamar, F. N. et al. Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: a matched case-control study. Lancet Infect. Dis. 18, 1368–1376 (2018).


    Google Scholar
     

  • 86.

    Lv, L., Yu, X., Xu, Q. & Ye, C. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts. Environ. Pollut. 205, 291–298 (2015).

    CAS 

    Google Scholar
     

  • 87.

    Lu, J. et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environ. Int. 121, 1217–1226 (2018).

    CAS 

    Google Scholar
     

  • 88.

    Zhang, Y., Gu, A. Z., He, M., Li, D. & Chen, J. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across Genera. Environ. Sci. Technol. 51, 570–580 (2017).

    CAS 

    Google Scholar
     

  • 89.

    Zhang, Y. et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ. Pollut. 237, 74–82 (2018).

    CAS 

    Google Scholar
     

  • 90.

    NRC, N. R. C. Drinking Water and Health: Disinfectants and Disinfectant By-Products. Vol. 7 (National Academies Press, 1987).

  • 91.

    Prest, E. I., Hammes, F., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Biological stability of drinking water: controlling factors, methods, and challenges. Front. Microbiol. 7, 45–45 (2016).


    Google Scholar
     

  • 92.

    Gomes, J., Costa, R., Quinta-Ferreira, R. M. & Martins, R. C. Application of ozonation for pharmaceuticals and personal care products removal from water. Sci. Total Environ. 586, 265–283 (2017).

    CAS 

    Google Scholar
     

  • 93.

    Boiteux, V. et al. Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source. Sci. Total Environ. 583, 393–400 (2017).

    CAS 

    Google Scholar
     

  • 94.

    Sun, M. et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the cape fear river watershed of North Carolina. Environ. Sci. Technol. Lett. 3, 415–419 (2016).

    CAS 

    Google Scholar
     

  • 95.

    Ternes, T. A. et al. Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol. 36, 3855–3863 (2002).

    CAS 

    Google Scholar
     

  • 96.

    Petrovic, M., Diaz, A., Ventura, F. & Barceló, D. Occurrence and removal of estrogenic short-chain ethoxy nonylphenolic compounds and their halogenated derivatives during drinking water production. Environ. Sci. Technol. 37, 4442–4448 (2003).

    CAS 

    Google Scholar
     

  • 97.

    Westerhoff, P., Yoon, Y., Snyder, S. & Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 39, 6649–6663 (2005).

    CAS 

    Google Scholar
     

  • 98.

    Su, H. C. et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci. Total Environ. 616–617, 453–461 (2018).


    Google Scholar
     

  • 99.

    Brandt, M. J., Johnson, K. M., Elphinston, A. J. & Ratnayaka, D. D. In Twort’s Water Supply (Seventh Edition) (eds M. J. Brandt, K. M. Johnson, A. J. Elphinston, & D. D. Ratnayaka) 367–406 (Butterworth-Heinemann, 2017).

  • 100.

    Flores, C., Ventura, F., Martin-Alonso, J. & Caixach, J. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Sci. Total Environ. 461–462, 618–626 (2013).


    Google Scholar
     

  • 101.

    Chen, C. Y. et al. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Sci. Total Environ. 378, 352–365 (2007).

    CAS 

    Google Scholar
     

  • 102.

    Borges, R. M., Minillo, A., Lemos, E. G. D. M., Prado, H. F. A. D. & Tangerino, E. P. Uso de filtros de carvão ativado granular associado a microrganismos para remoção de fármacos no tratamento de água de abastecimento. Eng. Sanit. Ambient. 21, 709–720 (2016).


    Google Scholar
     

  • 103.

    Zearley, T. L. & Summers, R. S. Removal of trace organic micropollutants by drinking water biological filters. Environ. Sci. Technol. 46, 9412–9419 (2012).

    CAS 

    Google Scholar
     

  • 104.

    Zhang, S., Gitungo, S. W., Axe, L., Raczko, R. F. & Dyksen, J. E. Biologically active filters—an advanced water treatment process for contaminants of emerging concern. Water Res. 114, 31–41 (2017).

    CAS 

    Google Scholar
     

  • 105.

    Yoon, Y., Westerhoff, P., Snyder, S. A. & Wert, E. C. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Memb. Sci. 270, 88–100 (2006).

    CAS 

    Google Scholar
     

  • 106.

    Yang, G. C., Yen, C. H. & Wang, C. L. Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan. J. Hazard. Mater. 277, 53–61 (2014).

    CAS 

    Google Scholar
     

  • 107.

    Pereira, R. O., Postigo, C., de Alda, M. L., Daniel, L. A. & Barcelo, D. Removal of estrogens through water disinfection processes and formation of by-products. Chemosphere 82, 789–799 (2011).

    CAS 

    Google Scholar
     

  • 108.

    Rodriguez-Chueca, J., Ormad, M. P., Mosteo, R., Sarasa, J. & Ovelleiro, J. L. Conventional and advanced oxidation processes used in disinfection of treated urban wastewater. Water Environ. Res. 87, 281–288 (2015).

    CAS 

    Google Scholar
     

  • 109.

    Acero, J. L., Benitez, F. J., Real, F. J., Roldan, G. & Rodriguez, E. Chlorination and bromination kinetics of emerging contaminants in aqueous systems. Chem. Eng. J. 219, 43–50 (2013).

    CAS 

    Google Scholar
     

  • 110.

    Sichel, C., Garcia, C. & Andre, K. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Res. 45, 6371–6380 (2011).

    CAS 

    Google Scholar
     

  • 111.

    Benotti, M. J., Stanford, B. D., Wert, E. C. & Snyder, S. A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res. 43, 1513–1522 (2009).

    CAS 

    Google Scholar
     

  • 112.

    Liu, S. et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ. Sci. Technol. 50, 8954–8976 (2016).

    CAS 

    Google Scholar
     

  • 113.

    Berry, D., Xi, C. & Raskin, L. Microbial ecology of drinking water distribution systems. Curr. Opin. Biotechnol. 17, 297–302 (2006).

    CAS 

    Google Scholar
     

  • 114.

    Zhou, X., Zhang, K., Zhang, T., Li, C. & Mao, X. An ignored and potential source of taste and odor (T&O) issues-biofilms in drinking water distribution system (DWDS). Appl. Microbiol. Biotechnol. 101, 3537–3550 (2017).

    CAS 

    Google Scholar
     

  • 115.

    Amariei, G., Boltes, K., Rosal, R. & Leton, P. Enzyme response of activated sludge to a mixture of emerging contaminants in continuous exposure. PLoS ONE 15, e0227267 (2020).


    Google Scholar
     

  • 116.

    Ren, S. Assessing wastewater toxicity to activated sludge: recent research and developments. Environ. Int. 30, 1151–1164 (2004).

    CAS 

    Google Scholar
     

  • 117.

    Collado, N. et al. Effects on activated sludge bacterial community exposed to sulfamethoxazole. Chemosphere 93, 99–106 (2013).

    CAS 

    Google Scholar
     

  • 118.

    Wang, S. & Wang, J. Degradation of emerging contaminants by acclimated activated sludge. Environ. Technol. 39, 1985–1993 (2017).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *