CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Tierney, J. E. & Pausata, F. S. R. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Tierney, J. E. Abrupt shifts in Horn of Africa hydroclimate since the Last Glacial Maximum. Science 342, 843–846 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Pausata, F. S. R. et al. The Greening of the Sahara: Past Changes and Future Implications, One Earth, 2, 235–250 (2020).


    Google Scholar
     

  • 6.

    Weiss, H. et al. The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Carolin, S. A. et al. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proc. Natl Acad. Sci. 116, 67–72 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Berkelhammer, M. et al. An abrupt shift in the Indian monsoon 4000 years ago. Geophys. Monogr. Ser. 198, 75–87 (2012).


    Google Scholar
     

  • 9.

    Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Kutzbach, J., Bonan, G., Foley, J. & Harrison, S. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384, 623 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Claussen, M. & Gayler, V. The greening of the Sahara during the mid-Holocene: results of an interactive atmosphere-biome model. Glob. Ecol. Biogeo. Lett. 6, 369–377 (1997).

  • 12.

    Braconnot, P., Joussaume, S., Marti, O. & De Noblet, N. Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett. 26, 2481–2484 (1999).

    ADS 

    Google Scholar
     

  • 13.

    Kutzbach, J. E. & Liu, Z. Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278, 440–443 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Marwick, B. Stone artefacts and recent research in the archaeology of mainland Southeast Asian hunter-gatherers. Before Farm. 2008, 1–19 (2008).

  • 15.

    White, J. C. Emergence of cultural diversity in mainland Southeast Asia: a view from prehistory. in Dynamics of human diversity: the case of mainland Southeast Asia (ed. Enfield, N. J.) 9–46 (Pacific Linguistics, Canberra, 2011).

  • 16.

    Oxenham, M. & Buckley, H. R. The Population History of Mainland and Island Southeast Asia. (Routledge, Abingdon, 2016).


    Google Scholar
     

  • 17.

    Higham, C. F. First farmers in Mainland Southeast Asia. J. Indo-Pac. Archaeo. 41, 13–21 (2017).


    Google Scholar
     

  • 18.

    McColl, H. et al. The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Yang, H., Johnson, K. R., Griffiths, M. L. & Yoshimura, K. Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions. J. Geophys. Res.: Atmos. 121, 8410–8428 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Johnson, K. R., Hu, C., Belshaw, N. S. & Henderson, G. M. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet. Sci. Lett. 244, 394–407 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Fairchild, I. J. & Treble, P. C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 28, 449–468 (2009).

    ADS 

    Google Scholar
     

  • 22.

    Griffiths, M. L. et al. Hydrological control of the dead carbon fraction in a Holocene tropical speleothem. Quat. Geochron. 14, 81–93 (2012).


    Google Scholar
     

  • 23.

    Genty, D. et al. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochim. Cosmochim. Acta 65, 3443–3457 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Wohlfarth, B. et al. Holocene environmental changes in northeast Thailand as reconstructed from a tropical wetland. Glob. Planet. Change 92, 148–161 (2012).

    ADS 

    Google Scholar
     

  • 25.

    Wang, J. K. et al. Hydroclimatic variability in Southeast Asia over the past two millennia. Earth Planet. Sci. Lett. 525, 115737 (2019).

    CAS 

    Google Scholar
     

  • 26.

    Weber, S., Lehman, H., Barela, T., Hawks, S. & Harriman, D. Rice or millets: early farming strategies in prehistoric central Thailand. Archaeo. Anthro. Sci. 2, 79–88 (2010).


    Google Scholar
     

  • 27.

    White, J. C. & Hamilton, E. G. Ban Chiang, Northeast Thailand, volume 2A: Background to the Study of the Metal Remains. (University of Pennsylvania Press, 2018).

  • 28.

    Yasuda, Y. et al. Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for environmental change and the rise and fall of the Yangtze River civilization. Quat. Int. 123, 149–158 (2004).


    Google Scholar
     

  • 29.

    Wu, Q. et al. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty. Science 353, 579–582 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Xie, S. et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology 41, 827–830 (2013).

    ADS 

    Google Scholar
     

  • 31.

    Gutaker, R. M. et al. Genomic history and ecology of the geographic spread of rice. Nat. Plants 6, 492–502 (2020).

    PubMed 

    Google Scholar
     

  • 32.

    de Menocal, P. B. Cultural responses to climate change during the late Holocene. Science 292, 667–673 (2001).

    ADS 

    Google Scholar
     

  • 33.

    Cullen, H. M. et al. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology 28, 379–382 (2000).

    ADS 

    Google Scholar
     

  • 34.

    Drysdale, R. et al. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34, 101–104 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Bradley, R. & Bakke, J. Is there evidence for a 4.2 ka BP event in the northern North Atlantic region? Clim. Past 15, 1665–1676 (2019).


    Google Scholar
     

  • 36.

    McGee, D., Winckler, G., Stuut, J. & Bradtmiller, L. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371, 163–176 (2013).

    ADS 

    Google Scholar
     

  • 37.

    de Menocal, P. B. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    ADS 

    Google Scholar
     

  • 38.

    Thompson, L. G. et al. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298, 589–593 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Ruggieri, E. A Bayesian approach to detecting change points in climatic records. Int. J. Climatol. 33, 520–528 (2013).


    Google Scholar
     

  • 40.

    Tierney, J. E., Russell, J. M., Damsté, J. S. S., Huang, Y. & Verschuren, D. Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary. Quat. Sci. Rev. 30, 798–807 (2011).

    ADS 

    Google Scholar
     

  • 41.

    Tierney, J. E. et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252–255 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Pennington, B. T., Hamdan, M. A., Pears, B. R. & Sameh, H. I. Aridification of the Egyptian Sahara 5000–4000 cal BP revealed from x-ray fluorescence analysis of Nile Delta sediments at Kom al-Ahmer/Kom Wasit. Quat. Int. 514, 108–118 (2019).

  • 43.

    Stott, L. et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Hazeleger, W. et al. EC-Earth: a seamless earth-system prediction approach in action. Bull. Am. Meteorol. Soc. 91, 1357–1364 (2010).

    ADS 

    Google Scholar
     

  • 45.

    Pausata, F. S. R., Messori, G. & Zhang, Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett. 434, 298–307 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Gaetani, M., Messori, G., Zhang, Q., Flamant, C. & Pausata, F. S. R. Understanding the mechanisms behind the northward extension of the West African Monsoon during the Mid-Holocene. J. Clim. 30, 7621–7642 (2017).

    ADS 

    Google Scholar
     

  • 47.

    Claussen, M., Dallmeyer, A. & Bader, J. Theory and Modeling of the African Humid Period and the Green Sahara. in Oxford Research Encyclopedia, Climate Science. (Oxford University Press, 2017).

  • 48.

    Pausata, F. S. R. et al. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period. Proc. Natl Acad. Sci. 114, 6221–6226 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Pausata, F. S. R. et al. Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nat. Commun. 8, 16020 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Thompson, C. & Battisti, D. A linear stochastic dynamical model of ENSO. Part I: Model development. J. Clim. 13, 2818–2832 (2000).

    ADS 

    Google Scholar
     

  • 51.

    Rodríguez‐Fonseca, B. et al. Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett. 36, L20705 (2009).

  • 52.

    Clement, A. C., Seager, R. & Cane, M. Orbital controls on the El Nino/Southern Oscillation and the tropical climate. Paleocean 14, 441–456 (1999).

    ADS 

    Google Scholar
     

  • 53.

    Chen, L., Zheng, W. & Braconnot, P. Towards understanding the suppressed ENSO activity during mid-Holocene in PMIP2 and PMIP3 simulations. Clim. Dyn. 53, 1095–1110 (2019).


    Google Scholar
     

  • 54.

    Li, Z. et al. Holocene surface hydroclimate changes in the Indo-Pacific warm pool. Quat. Int. 482, 1–12 (2018).

  • 55.

    Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Zhang, Z., Leduc, G. & Sachs, J. P. El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands. Earth Planet. Sci. Lett. 404, 420–434 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Grothe, P. R. et al. Enhanced El Niño‐Southern Oscillation variability in recent decades. Geophys. Res. Lett. 47, e2019GL083906 (2019).

    ADS 

    Google Scholar
     

  • 58.

    Berry, G. & Reeder, M. J. Objective identification of the intertropical convergence zone: Climatology and trends from the ERA-Interim. J. Clim. 27, 1894–1909 (2014).

    ADS 

    Google Scholar
     

  • 59.

    Zhang, H. et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science 362, 580–583 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Chiang, J. C., Swenson, L. & Kong, W. Role of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitation. Geophys. Res. Lett. 44, 3788–3795 (2017).

    ADS 

    Google Scholar
     

  • 61.

    Nagashima, K., Tada, R. & Toyoda, S. Westerly jet‐East Asian summer monsoon connection during the Holocene. Geochem. Geophys. Geosyst. 14, 5041–5053 (2013).

    ADS 

    Google Scholar
     

  • 62.

    Santos, G., Southon, J., Griffin, S., Beaupre, S. & Druffel, E. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI facility. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 259, 293–302 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Genty, D. & Massault, M. Bomb 14C recorded in laminated speleothems: calculation of dead carbon proportion. Radiocarbon 39, 33–48 (1997).

    CAS 

    Google Scholar
     

  • 64.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 

    Google Scholar
     

  • 65.

    Edwards, R. L., Chen, J. & Wasserburg, G. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 81, 175–192 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Robinson, L. F., Henderson, G. M. & Slowey, N. C. U–Th dating of marine isotope stage 7 in Bahamas slope sediments. Earth Planet. Sci. Lett. 196, 175–187 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Mason, A. J. & Henderson, G. M. Correction of multi-collector-ICP-MS instrumental biases in high-precision uranium–thorium chronology. Internat. J. Mass Spectrom. 295, 26–35 (2010).

    CAS 

    Google Scholar
     

  • 68.

    Fohlmeister, J. A statistical approach to construct composite climate records of dated archives. Quat. Geochronol. 14, 48–56 (2012).


    Google Scholar
     

  • 69.

    Madec, G. Nemo Ocean Engine, Note Du Pole De Modlisation. No. 27, ISSN No. 1288–1618 (Institut Pierre-Simon Laplace (IPSL)), Paris, France, 2008) Available at http://www.nemo-ocean.eu/About-NEMO/Reference-manuals.

  • 70.

    Vancoppenolle, M. et al. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell. 27, 33–53 (2009).

    ADS 

    Google Scholar
     

  • 71.

    Berger, A. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    ADS 

    Google Scholar
     

  • 72.

    Albani, S. et al. Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Sys. 6, 541–570 (2014).

    ADS 

    Google Scholar
     

  • 73.

    Kajita, H. et al. Extraordinary cold episodes during the mid-Holocene in the Yangtze delta: Interruption of the earliest rice cultivating civilization. Quat. Sci. Rev. 201, 418–428 (2018).

    ADS 

    Google Scholar
     

  • 74.

    Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M. & Sachs, J. P. El Nino-like pattern in ice age tropical Pacific sea surface temperature. Science 297, 226–230 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Röhl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304–1308 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Wen, R. et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas 39, 262–272 (2010).


    Google Scholar
     

  • 77.

    Li, H. et al. Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000 years ago. Clim. Past 14, 1881–1891 (2018).


    Google Scholar
     

  • [ad_2]

    Source link

    3 thoughts on “End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia”

    Leave a Reply

    Your email address will not be published. Required fields are marked *